Molecular Identification, Phylogenetic Classification and Proteolytic Capacity of Cultivable Bacteria Isolated from Soils in Brazzaville, Republic of Congo

Authors

  • Ngo Itsouhou Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, République du Co
  • Nguimbi Etienne Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, République du Congo.
  • Kayath Aimé Christian Unité de Microbiologie Moléculaire et Bioinformatique, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.
  • Ampa Raoul Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, République du Congo.

DOI:

https://doi.org/10.54987/jobimb.v7i2.475

Keywords:

molecular identification; phylogenetic classification; proteolytic activity; bacteria; soils

Abstract

Soils present a biodiversity of bacteria, part of this microflora is cultivable, it can be estimated, characterized and identified. Four zones each comprising three sites were sampled in Brazzaville in the Republic of Congo. Phenotypic characterization, molecular identification and proteolytic capacity of soil bacteria were conducted. One of the factors, the pH was measured, the pH values were between 6 and 7. From the classical microbiology techniques, we counted the total flora of the microorganisms in (CFU / g.103), it is between 47 ± 11.2 and 214 ± 58.2 and that of bacteria of the genus Bacillus from 51.3 ± 5.0 to 74 ± 30.7. Cocci and bacilli were obtained, Gram- and Gram + bacteria distinguished, all bacteria were catalase +, some had sporulation, others not. Thirty-one (31) isolates were phenotypically characterized and 16S rDNA PCR was performed. Ten (10) strains were sequenced and the phylogenetic classification of the identified strains presented. Blastn's research on the 16S rDNA sequences of the different strains shows similarity rates (96.77% -100%) and E. value (9.00E-93 -0.0), these two indices allowed the identification of the strains studied. The percentages of the identified strains are as follows: Bacillus cereus (20%) = MN6 and MN14, Bacillus pumilus (10%) = MN7, Bacillus thuringiensis (10%) = MN12, B sp. (10%) = MN17, Bacillus subtilis (10%) = MN26, Staphylococcus haemolyticus (10%) = MN8, Staphylococcus saprophyticus (10%) = MN21, Staphylococcus sp. (10%) = MN22, Staphylococcus gallinarum (10%) = MN24. The phylogenetic tree shows that the bacteria belong to two main monophyletic genera, the genus Bacillus and the genus Staphylococcus. The proteolytic capacity of Bacillus bacteria was assessed in parallel with growth. The optical density was between (0.8- 0.93) and proteolytic enzyme production between (9-20mm). The parallelism between growth and enzymatic production shows that the two phenomena are distinct.

References

Daniel R. The metagenomics of soil. Nat Rev Microbiol, 2005; 3: 470-8

Fierer N, Lennon JT. The generation and maintenance of diversity in microbial communities. Am J Bot, 2011; 98: 439-48.

P. C. Y. Woo, P. K. L. Leung, K. W. Leung, and K. Y. Yuen, Identification by 16s ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient, J Clin Pathol—Mol Pathol, 2000; 53(4): 211–215.

Woo, P. C. Y., S. K. P. Lau, J. L. L. Teng, H. Tse, and K-Y. Yuen. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect, 2008; 14(10):: 908-934.

Suardana, I. Wayan. Analysis of nucleotide sequences of the 16S rRNA gene of novel Escherichia coli strains isolated from feces of human and Bali cattle. J Nucleic Acids, 2014 (2014).

Boudewijns, Michael, Judith M. Bakkers, Patrick DJ Sturm, and Willem JG Melchers. 16S rRNA gene sequencing and the routine clinical microbiology laboratory: a perfect marriage? J Clin Microbiol., 2006; 44(2): 3469-3470.

Wang, Y., Zhang, L., Zhang, H., Liu, W., Zhang, Y., Zhang, X, and Sun, T., In vitro assessment of probiotic properties of Bacillus isolated from naturally fermented congee from Inner Mongolia of China. World J Microbiol Biotechnol,2010; 26(8), 1369-1377.

Miambi, E., J.P. Guyot and F. Ampe, Identification, isolation and quantification of representative bacteria from fermented cassava dough using an integrated approach of culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2003; 82(2): 111-120.

Zou He-chang. The development of thrombolytic Agents. Chinese Pharma J. 1997 ; 32(5): 263-267.

Zheng Yan-bing, Lu Fu-ping, Du Liang-xiang. Optimization of fermentation conditions of fibrinolytic enzyme produced by Rhizopus chinesis sp. Ind Microbiol,2000; 30(4): 28-31

Nguimbi Etienne, Ahombo Gabriel, Moyen Rachel, Ampa Raoul, Alain Vouidibio, Ontsira Esther Nina, Kobawila Simon Charle Louembe Delphin. Optimization of Growth, Fibrinolytic Enzyme Production and PCR Amplification of Encoding Fibrinolytic Enzyme Gene in Bacillus amyloliquefaciens Isolated from Ntoba mbodi at Brazzaville. Int J Sci Res 2014; 3(11):2319-7064

Soloka Mabika Armel Faly, Rachel Moyen, Etienne Nguimbi, Gabriel Ahombo, Raoul Ampa, Aimé Christian Kayath, Alain Vouidibio, Cyr Jonas Morabandza and Simon Charles Kobawila. Production, Partial Purification and Based SDS-PAGE Profiles of Caseinolytic Enzyme in two Bacillus Strains Isolated from Fermented Cassava leaves "Ntoba mbodi" in Congo Brazzaville. J Pure Appl Microbiol. 2017; 11(1);77-86.

Harrigan, Wilkie F. Laboratory methods in food microbiology. Gulf Professional Publishing, 1998.

Harrigan, W.F. and M.E. McCance, Laboratory Methods in Food and Dairy Microbiology. 1st Edn., Academic Press, 1976; London, pp: 25-29.

Wulff E.G., Mguni C.M., Mansfeld-Giese K., Fels J., Lübeck M., Hockenhull J. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. 2002; Plant Pathol.;51(5):574–584.

Leyral G., Vierling E., Microbiologie et toxicologie des aliments, 4e ed, Doin Éditions, Leyral G., Joffin C. et J.N, Boursdaise, Larpent 2007

Carr-Schmid A, et al. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol Cell Biol 2002; 22(8):2564-74.

Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol, 1991;173: 697-703.

Puri S, Beg QK, Gupta R Optimization of alkaline protease production from Bacillus sp. by response surface methodology Curr Microbiol 2002;44:286-290.

Astrup T., Mullertz S. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys., 1952;40, 346-351.

Wang S.H., Zhang C., Yang Y.L., Diao M., Bai M.F. Screening of high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD 8547. World J. Microbiol.Biotechnol., 2008; 24(4) 475-482.

Wang S.-H., Diao M., Yang Y.-L., Lin W.-Z, Huang B.-F Gene clone and expression of a fibrinolytic enzyme (FE) in Escherichia coli. Ann Microbiol, 2008; 58 (1) 95-98.

Zhang R.H., Xiao L., Peng Y., Wang H.Y., Bai F., Zhang Y.Z. Gene expression and characteristics of a novel fibrinolytic enzyme (subtilisine DFE) in Escherichia coli.Lett. App. Microbial., 2005; 41: 190-195.

Didine Priscilla Moutou-Tchitoula1, Etienne Nguimbi1, Stéphanie Giusti-Miller2, Philippe Mora2, Simon Charles Kobawila1, Edouard Miambi2. Assessment of dominant bacterial strains isolated from Ntoba mbodi, an indigenous African alkaline-fermented food, and their potential enzyme activities. Afr J Microbiol Res, 2018, 12(32): 779-787.

Rojo F., Enzymes for aerobic degradation of alkanes. Handbook of Hydrocarbon and Lipid Microbiology, 2010;18p.

Rousk J., Brookes P. C., Bååth E., Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol., 2009;75(6): 1589–1596.

Agamuthu P., Tan Y. S., Fauziah H. S, Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environ Sci, 2013;18: 694-702.

Theodorakopoulos N., Analyse de la biodiversité bactérienne d’un sol contaminé de la zone d’exclusion de Tchernobyl et caractérisation de l’interaction engagée par une souche de Microbacterium avec l’uranium. Aix-Marseille. 2013;198p.

Nzila J. D., Caractéristiques physiques et socio-économiques de la ville de Brazzaville et ses environs. Synthèse bibliographique, 2005; 8 p.

Saitou N. and Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and 1987; Evolution 4:406-425.

Zuckerkandl E. and Pauling L. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel, 1965; pp. 97-166. Academic Press, New York.

Kumar S., Stecher G., and Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Molecular Biology and Evolution 2016; 33:1870-1874.

Patel, J. B. “16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory,†Mol Diagnos, 2001; vol. 6(4),313–321.

Fattahi, F., Mirvaghefi, A.H. Farahmand, G. Rafiee, and A. Abdollahi, “Development of 16s rRNAtargeted PCR method for the detection of Escherichia coli in rainbowtrout (Oncorhynchus mykiss),†Iran J Pathol, 2013; vol. 8, no. 1, pp. 36–44,

Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. J Mol Biol, 1990; 215(3), 403–10.

Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W. & Lipman D. J. Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. Nucleic Acids Res. 1997, 25(17):3389-402

Bidaud C., Biodégradation des hydrocarbures aromatiques polycycliques. Approche microbiologique et application au traitement d’un sol pollué, in Chemical and Process Engineering. Ecole Nationale Supérieure des Mines de Saint-Etienne.1998; 279p.

Nihan Sevinc and Elif Demirkan.Production of Protease by Bacillus sp. N-40 Isolated from Soil and Its Enzymatic Properties J. Biol. Environ. Sci. 2011: 5(14), 95-103.

Adinarayana K, Ellaiah P, and Prasad DS Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. 2003AAPS Pharm. Sci Tech., 4:1-9

Downloads

Published

26.12.2019

How to Cite

Itsouhou, N., Etienne, N., Christian, K. A., & Raoul, A. (2019). Molecular Identification, Phylogenetic Classification and Proteolytic Capacity of Cultivable Bacteria Isolated from Soils in Brazzaville, Republic of Congo. Journal of Biochemistry, Microbiology and Biotechnology, 7(2), 1–7. https://doi.org/10.54987/jobimb.v7i2.475

Issue

Section

Articles