Pharmacological Modulation of the Microbiome in the Prevention and Treatment of Infectious Diseases: Current Evidence and Future Directions

Authors

  • Hareg Zewdu Alehegn Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, PMB 5116, Ibadan, Oyo State, Nigeria.
  • Philbert Nzeyimana Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, PMB 5116, Ibadan, Oyo State, Nigeria.
  • Alhagie Drammeh Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, PMB 5116, Ibadan, Oyo State, Nigeria.
  • Rukayya Garba Anchau Vector and Parasitology Research Department, Nigerian Institute for Trypanosomiasis Research (NITR), PMB 2077, Kaduna 800001, Nigeria.
  • Jibrin Abdulkadir Department of Industrial and Environmental Pollution, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Idris Bello Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • O.A. Ogabidu Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Danna Saleh Danna Kano Outstation, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Rufa’i Salihu Kano Outstation, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • M.G. Jocthan Kano Outstation, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Mary Bernad Kano Outstation, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Ini Edeh Yola Outstation, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.
  • Jibrin Muhammad Yelwa Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, PMB 1052, Basawa, Zaria, Kaduna State, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v13i2.1162

Keywords:

Human microbiome, Infectious disease prevention, Microbiome modulation, Probiotics and FMT, Antibiotic associated dysbiosis

Abstract

Human microbiome is a significant point of contact for immunity building and prevents contagious diseases. If the microbiome is disrupted, especially due to broad-spectrum antibiotics, it will make infections more likely to occur with complex disease outcomes like Clostridium difficile colitis. Pharmacological interventions such as probiotics, prebiotics, and microbiome therapy strategies one to two generations ahead and the transplant method, FMT, are all very promising solutions for infection prevention and treatment through their effects on the microbiome. The purpose of this review is to evaluate the present state of knowledge concerning the relationship between the microbiome and infections and to present some of the new pharmacological microbiome modulation strategies. It gives examples where microbiome-targeted therapy has led to a reduction in the infectious risk, a very welcome situation regarding hospitalized/immunocompromised patients, for instance. Nevertheless, though a lot of people are fascinated by the area, problems such as personalized varieties one by one, institutional prejudices, and regulatory unknowns are still the main issues for clinical translating. The use of microbiome-modulating clinical practices is backed up by the research that goes with infectious disease therapies. These fields' growth will necessarily involve collaboration among scientists from different areas and massive error-free clinical trials to confirm the effectiveness and safety of the treatments in different subcategories of patients and infection strains.

References

Xiao Y, Louwies T, Mars RAT, Kashyap PC. The human microbiome: a physiologic perspective. Compr Physiol. 2024;14(3):5491–5519. http://doi.org/10.1002/cphy.c230013

Tota JE, Struyf F, Hildesheim A, Gonzalez P, Ryser M, Herrero R, et al. Efficacy of AS04-adjuvanted vaccine against human papillomavirus (HPV) types 16 and 18 in clearing incident HPV infections: pooled analysis of data from the Costa Rica Vaccine Trial and the PATRICIA Study. J Infect Dis. 2021;223(9):1576–1581. http://doi.org/10.1093/infdis/jiaa561

Allam A. Update on the human microbiome and its clinical importance. Microbes Infect Dis. 2021. https://doi.org/10.21608/mid.2021.93318.1189

Li Q, Li Z, Deng N, Ding F, Li Y, Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022;227:113917. http://doi.org/10.1016/j.ejmech.2021.113917

Fang Y, Lei Z, Zhang L, Liu CH, Chai Q. Regulatory functions and mechanisms of human microbiota in infectious diseases. hLife. 2024;2(10):496–513. http://doi.org/10.1016/j.hlife.2024.03.004

Maksymowicz M, Ręka G, Machowiec P, Piecewicz-Szczęsna H. The role of microbiota in pathogenesis and development of viral infections. J Educ Health Sport. 2021;11(12):320–326. https://doi.org/10.12775/jehs.2021.11.12.025

Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome dynamics: a paradigm shift in combatting infectious diseases. J Pers Med. 2024;14(2):217. http://doi.org/10.3390/jpm14020217

Athar A, Rasool A, Muzaffar HS, Mahmood A, Abdullah M, Ali Z, et al. The human microbiome: a critical player in health and disease. World J Biol Biotechnol. 2023;8(1):31. https://doi.org/10.33865/wjb.008.01.1000

Yan Y, Yao D, Li X. Immunological mechanism and clinical application of PAMP adjuvants. PRA. 2021;16(1):30–43. https://doi.org/10.2174/1574892816666210201114712

Ivanova A, Yalovenko O, Dugan A. Human gut microbiome as an indicator of human health. Innov Biosyst Bioeng. 2021;5(4):207–219. https://doi.org/10.20535/ibb.2021.5.4.244375

Manos J. The human microbiome in disease and pathology. APMIS. 2022;130(12):690–705. https://doi.org/10.1111/apm.13225

Bansal R. Deteriorating human microbiome: an emerging global health challenge. Indian J Community Health. 2021;33(3):417–418. https://doi.org/10.47203/ijch.2021.v33i03.001

Brouillette M. Translating the microbiome: a flurry of microbiome research over the past two decades has led to many insights about the link between microbes and health, but now the race to the clinic is on. Inside Precis Med. 2022;9(5):40–41, 44–45. https://doi.org/10.1089/ipm.09.05.10

Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The microbiome as part of the contemporary view of tuberculosis disease. Pathogens. 2022;11(5):584. http://doi.org/10.3390/pathogens11050584

Bjarnsholt T, Ralfkiaer U, Malone M. APMIS 2022 focus issue on human microbiome in disease and pathology. APMIS. 2022;130(12):689. https://doi.org/10.1111/apm.13283

Batty CJ, Gallovic MD, Williams J, Ross TM, Bachelder EM, Ainslie KM. Multiplexed electrospray enables high-throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine. Int J Pharm. 2022;622:121839. http://doi.org/10.1016/j.ijpharm.2022.121839

Giovanni MY, Schneider JS, Calder T, Fauci AS. Refocusing human microbiota research in infectious and immune-mediated diseases: advancing to the next stage. J Infect Dis. 2021;224(1):5–8. https://doi.org/10.1093/infdis/jiaa706

Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease. Annu Rev Public Health. 2021;42:277–292. https://doi.org/10.1146/annurev-publhealth-012420-105020

López-Gomez A, Real-Arévalo I, Martín-Palma R, Martínez-Naves E, Del Moral MG. Manufacture of mesoporous silicon microparticles as adjuvants for vaccine delivery. In: Reche PA, editor. Computational vaccine design. Methods Mol Biol. Vol 2673. New York: Springer; 2023. p. 123–130. http://doi.org/10.1007/978-1-0716-3239-0_8

Anee IJ, Alam S, Begum RA, Shahjahan RM, Khandaker AM. The role of probiotics on animal health and nutrition. J Basic Appl Zool. 2021;82(1):52. https://doi.org/10.1186/s41936-021-00250-x

Melnychuk IO, Sharaieva ML, Gargi A, Lyzogub VH. The main factors that improve gut microbiota composition. Mod Med Technol. 2024;16(2):132–143. https://doi.org/10.14739/mmt.2024.2.298841

Rafieenia R, Atkinson E, Ledesma-Amaro R. Division of labor for substrate utilization in natural and synthetic microbial communities. Curr Opin Biotechnol. 2022;75:102706. http://doi.org/10.1016/j.copbio.2022.102706

Warda AK, Clooney AG, Ryan F, De Almeida Bettio PH, Di Benedetto G, Ross RP, et al. A postbiotic consisting of heat-treated Lactobacilli has a bifidogenic effect in pure culture and in human fermented fecal communities. Appl Environ Microbiol. 2021;87(8):e02459-20.https://doi.org/10.1128/aem.02459-20

Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, et al. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv. 2023;65:108142. http://doi.org/10.1016/j.biotechadv.2023.108142

Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring therapeutic advances: a comprehensive review of intestinal microbiota modulators. Antibiotics (Basel). 2024;13(8):720. http://doi.org/10.3390/antibiotics13080720

Negash W, Dubie T. Contagious bovine pleuropneumonia: seroprevalence and its associated risk factors in selected districts of Afar region, Ethiopia. Vet Med Sci. 2021;7(5):1671–1677. https://doi.org/10.1002/vms3.566

Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Biliński J, Roviello G, Iannone LF, Atzeni A, et al. Gut microbiome modulation and faecal microbiota transplantation following allogenic hematopoietic stem cell transplantation. Cancers. 2021;13(18):4665. http://doi.org/10.3390/cancers13184665

Borrego-Ruiz A, Borrego JJ. Early-life gut microbiome development and its potential long-term impact on health outcomes. Microbiome Res Rep. 2025;4(2). https://doi.org/10.20517/mrr.2024.78

Borrego-Ruiz A, Borrego JJ. Nutritional and microbial strategies for treating acne, alopecia, and atopic dermatitis. Nutrients. 2024;16(20):3559. http://doi.org/10.3390/nu16203559

Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children. 2025 Jan 29;12(2):166. https://doi.org/10.3390/children12020166

Rodriguez JRD, Lu W, Papadopoulos JM, Venturelli OS, Romero PA. Engineered lysins to modulate human gut microbiome communities. Synthetic Biology; 2024 [cited 2025 Oct 2]. Available from: http://biorxiv.org/lookup/doi/10.1101/2024.05.14.594189

Qu J, Meng F, Wang Z, Xu W. Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. J Microbiol Biotechnol. 2024 Dec 28;34(12):2413–24. https://doi.org/10.4014/jmb.2405.05019

Dharmaratne P, Rahman N, Leung A, Ip M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and meta-analysis. Ann Med. 2021;53(1):662–681. http://doi.org/10.1080/07853890.2021.1910250

Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev. 2023;52(15):5172–5254. http://doi.org/10.1039/D3CS00191A

Peroni DG, Morelli L. Probiotics as adjuvants in vaccine strategy: is there more room for improvement? Vaccines (Basel). 2021;9(8):811. http://doi.org/10.3390/vaccines9080811

Brooks JP. Challenges for case-control studies with microbiome data. Ann Epidemiol. 2016;26(5):336–341.e1. http://doi.org/10.1016/j.annepidem.2016.03.008

Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: implications for health, disease, and therapeutic interventions. Medicine (Baltimore). 2024;103(19):e38088. http://doi.org/10.1097/MD.0000000000038088

Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any future for faecal microbiota transplantation as a novel strategy for gut microbiota modulation in human and veterinary medicine? Life (Basel). 2022;12(5):723. http://doi.org/10.3390/life12050723

Berlanda M, Innocente G, Simionati B, Di Camillo B, Facchin S, Giron M, et al. Faecal microbiome transplantation as a solution to chronic enteropathies in dogs: a case study of beneficial microbial evolution. Animals (Basel). 2021;11(5):1433. http://doi.org/10.3390/ani11051433

Klatt NR, Broedlow C, Osborn JM, Gustin AT, Dross S, O’Connor MA, et al. Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. npj Vaccines. 2021;6(1):34. http://doi.org/10.1038/s41541-021-00303-7

Gonçalves JIB, Borges TJ, De Souza APD. Microbiota and the response to vaccines against respiratory virus. Front Immunol. 2022;13:889945. http://doi.org/10.3389/fimmu.2022.889945

Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding host immunity and the gut microbiota inspires the new development of vaccines and adjuvants. Pharmaceutics. 2021;13(2):163. http://doi.org/10.3390/pharmaceutics13020163

Kneis B, Wirtz S, Weber K, Denz A, Gittler M, Geppert C, et al. Colon cancer microbiome landscaping: differences in right- and left-sided colon cancer and a tumor microbiome-ileal microbiome association. Int J Mol Sci. 2023;24(4):3265. http://doi.org/10.3390/ijms24043265

Nearing JT, Comeau AM, Langille MGI. Identifying biases and their potential solutions in human microbiome studies. Microbiome. 2021;9(1):113. http://doi.org/10.1186/s40168-021-01059-0

Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–232. http://doi.org/10.1016/j.cell.2019.12.025

Kleine-Bardenhorst S, Berger T, Klawonn F, Vital M, Karch A, Rübsamen N. Data analysis strategies for microbiome studies in human populations: a systematic review of current practice. mSystems. 2021;6(1):e01154-20. http://doi.org/10.1128/mSystems.01154-20

Ilan Y. Why targeting the microbiome is not so successful: can randomness overcome the adaptation that occurs following gut manipulation? Clin Exp Gastroenterol. 2019;12:209–217. http://doi.org/10.2147/CEG.S203951

Lampeter T, Love C, Tang TT, Marella AS, Lee HY, Oganyan A, et al. Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome. Gut Microbes. 2023;14:e13.

Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, et al. Factors influencing microbiota in modulating vaccine immune response: a long way to go. Vaccines (Basel). 2023;11(10):1609. http://doi.org/10.3390/vaccines11101609

Joshi D, Chbib C, Uddin MN, D’Souza MJ. Evaluation of microparticulate (S)-4,5-dihydroxy-2,3-pentanedione (DPD) as a potential vaccine adjuvant. AAPS J. 2021;23(4):84. http://doi.org/10.1208/s12248-021-00593-8

Liu Z, Hosomi K, Kunisawa J. Utilization of gut environment-mediated control system of host immunity in the development of vaccine adjuvants. Vaccine. 2022;40(36):5399–5403. http://doi.org/10.1016/j.vaccine.2022.07.040

Caminero A, Tropini C, Valles-Colomer M, Shung DL, Gibbons SM, Surette MG, et al. Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI. Nat Rev Gastroenterol Hepatol. 2025. http://doi.org/10.1038/s41575-025-01100-9

Tran VA, Vo V, Dang VQ, Vo GNL, Don TN, Doan VD, et al. Nanomaterial for adjuvants vaccine: practical applications and prospects. Indones J Chem. 2024;24(1):284.

Suk KT, Kim DJ. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2019;13(3):193–204. http://doi.org/10.1080/17474124.2019.1569512

Zhang H, Heng X, Yang H, Rao Y, Yao L, Zhu Z, et al. Metal-free atom transfer radical polymerization to prepare recyclable micro-adjuvants for dendritic cell vaccine. Angew Chem Int Ed Engl. 2024;63(24):e202402853. http://doi.org/10.1002/anie.202402853

Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human coronavirus infection. J Inorg Biochem. 2021;219:111454. http://doi.org/10.1016/j.jinorgbio.2021.111454

Cruz CS, Ricci MF, Vieira AT. Gut microbiota modulation as a potential target for the treatment of lung infections. Front Pharmacol. 2021;12:724033. http://doi.org/10.3389/fphar.2021.724033

Downloads

Published

12.12.2025

How to Cite

Alehegn, H. Z. ., Nzeyimana, P. ., Drammeh, A. ., Anchau, R. G., Abdulkadir, J. ., Bello, I. ., Ogabidu, O. ., Danna, D. S., Salihu, R. ., Jocthan, M. ., Bernad, M. ., Edeh, I. ., & Yelwa, J. M. (2025). Pharmacological Modulation of the Microbiome in the Prevention and Treatment of Infectious Diseases: Current Evidence and Future Directions. Journal of Biochemistry, Microbiology and Biotechnology, 13(2), 153–162. https://doi.org/10.54987/jobimb.v13i2.1162

Issue

Section

Articles