Pharmacological Modulation of the Microbiome in the Prevention and Treatment of Infectious Diseases: Current Evidence and Future Directions
DOI:
https://doi.org/10.54987/jobimb.v13i2.1162Keywords:
Human microbiome, Infectious disease prevention, Microbiome modulation, Probiotics and FMT, Antibiotic associated dysbiosisAbstract
Human microbiome is a significant point of contact for immunity building and prevents contagious diseases. If the microbiome is disrupted, especially due to broad-spectrum antibiotics, it will make infections more likely to occur with complex disease outcomes like Clostridium difficile colitis. Pharmacological interventions such as probiotics, prebiotics, and microbiome therapy strategies one to two generations ahead and the transplant method, FMT, are all very promising solutions for infection prevention and treatment through their effects on the microbiome. The purpose of this review is to evaluate the present state of knowledge concerning the relationship between the microbiome and infections and to present some of the new pharmacological microbiome modulation strategies. It gives examples where microbiome-targeted therapy has led to a reduction in the infectious risk, a very welcome situation regarding hospitalized/immunocompromised patients, for instance. Nevertheless, though a lot of people are fascinated by the area, problems such as personalized varieties one by one, institutional prejudices, and regulatory unknowns are still the main issues for clinical translating. The use of microbiome-modulating clinical practices is backed up by the research that goes with infectious disease therapies. These fields' growth will necessarily involve collaboration among scientists from different areas and massive error-free clinical trials to confirm the effectiveness and safety of the treatments in different subcategories of patients and infection strains.
References
Xiao Y, Louwies T, Mars RAT, Kashyap PC. The human microbiome: a physiologic perspective. Compr Physiol. 2024;14(3):5491–5519. http://doi.org/10.1002/cphy.c230013
Tota JE, Struyf F, Hildesheim A, Gonzalez P, Ryser M, Herrero R, et al. Efficacy of AS04-adjuvanted vaccine against human papillomavirus (HPV) types 16 and 18 in clearing incident HPV infections: pooled analysis of data from the Costa Rica Vaccine Trial and the PATRICIA Study. J Infect Dis. 2021;223(9):1576–1581. http://doi.org/10.1093/infdis/jiaa561
Allam A. Update on the human microbiome and its clinical importance. Microbes Infect Dis. 2021. https://doi.org/10.21608/mid.2021.93318.1189
Li Q, Li Z, Deng N, Ding F, Li Y, Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022;227:113917. http://doi.org/10.1016/j.ejmech.2021.113917
Fang Y, Lei Z, Zhang L, Liu CH, Chai Q. Regulatory functions and mechanisms of human microbiota in infectious diseases. hLife. 2024;2(10):496–513. http://doi.org/10.1016/j.hlife.2024.03.004
Maksymowicz M, Ręka G, Machowiec P, Piecewicz-Szczęsna H. The role of microbiota in pathogenesis and development of viral infections. J Educ Health Sport. 2021;11(12):320–326. https://doi.org/10.12775/jehs.2021.11.12.025
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome dynamics: a paradigm shift in combatting infectious diseases. J Pers Med. 2024;14(2):217. http://doi.org/10.3390/jpm14020217
Athar A, Rasool A, Muzaffar HS, Mahmood A, Abdullah M, Ali Z, et al. The human microbiome: a critical player in health and disease. World J Biol Biotechnol. 2023;8(1):31. https://doi.org/10.33865/wjb.008.01.1000
Yan Y, Yao D, Li X. Immunological mechanism and clinical application of PAMP adjuvants. PRA. 2021;16(1):30–43. https://doi.org/10.2174/1574892816666210201114712
Ivanova A, Yalovenko O, Dugan A. Human gut microbiome as an indicator of human health. Innov Biosyst Bioeng. 2021;5(4):207–219. https://doi.org/10.20535/ibb.2021.5.4.244375
Manos J. The human microbiome in disease and pathology. APMIS. 2022;130(12):690–705. https://doi.org/10.1111/apm.13225
Bansal R. Deteriorating human microbiome: an emerging global health challenge. Indian J Community Health. 2021;33(3):417–418. https://doi.org/10.47203/ijch.2021.v33i03.001
Brouillette M. Translating the microbiome: a flurry of microbiome research over the past two decades has led to many insights about the link between microbes and health, but now the race to the clinic is on. Inside Precis Med. 2022;9(5):40–41, 44–45. https://doi.org/10.1089/ipm.09.05.10
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The microbiome as part of the contemporary view of tuberculosis disease. Pathogens. 2022;11(5):584. http://doi.org/10.3390/pathogens11050584
Bjarnsholt T, Ralfkiaer U, Malone M. APMIS 2022 focus issue on human microbiome in disease and pathology. APMIS. 2022;130(12):689. https://doi.org/10.1111/apm.13283
Batty CJ, Gallovic MD, Williams J, Ross TM, Bachelder EM, Ainslie KM. Multiplexed electrospray enables high-throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine. Int J Pharm. 2022;622:121839. http://doi.org/10.1016/j.ijpharm.2022.121839
Giovanni MY, Schneider JS, Calder T, Fauci AS. Refocusing human microbiota research in infectious and immune-mediated diseases: advancing to the next stage. J Infect Dis. 2021;224(1):5–8. https://doi.org/10.1093/infdis/jiaa706
Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for noncommunicable disease. Annu Rev Public Health. 2021;42:277–292. https://doi.org/10.1146/annurev-publhealth-012420-105020
López-Gomez A, Real-Arévalo I, Martín-Palma R, Martínez-Naves E, Del Moral MG. Manufacture of mesoporous silicon microparticles as adjuvants for vaccine delivery. In: Reche PA, editor. Computational vaccine design. Methods Mol Biol. Vol 2673. New York: Springer; 2023. p. 123–130. http://doi.org/10.1007/978-1-0716-3239-0_8
Anee IJ, Alam S, Begum RA, Shahjahan RM, Khandaker AM. The role of probiotics on animal health and nutrition. J Basic Appl Zool. 2021;82(1):52. https://doi.org/10.1186/s41936-021-00250-x
Melnychuk IO, Sharaieva ML, Gargi A, Lyzogub VH. The main factors that improve gut microbiota composition. Mod Med Technol. 2024;16(2):132–143. https://doi.org/10.14739/mmt.2024.2.298841
Rafieenia R, Atkinson E, Ledesma-Amaro R. Division of labor for substrate utilization in natural and synthetic microbial communities. Curr Opin Biotechnol. 2022;75:102706. http://doi.org/10.1016/j.copbio.2022.102706
Warda AK, Clooney AG, Ryan F, De Almeida Bettio PH, Di Benedetto G, Ross RP, et al. A postbiotic consisting of heat-treated Lactobacilli has a bifidogenic effect in pure culture and in human fermented fecal communities. Appl Environ Microbiol. 2021;87(8):e02459-20.https://doi.org/10.1128/aem.02459-20
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, et al. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv. 2023;65:108142. http://doi.org/10.1016/j.biotechadv.2023.108142
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring therapeutic advances: a comprehensive review of intestinal microbiota modulators. Antibiotics (Basel). 2024;13(8):720. http://doi.org/10.3390/antibiotics13080720
Negash W, Dubie T. Contagious bovine pleuropneumonia: seroprevalence and its associated risk factors in selected districts of Afar region, Ethiopia. Vet Med Sci. 2021;7(5):1671–1677. https://doi.org/10.1002/vms3.566
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Biliński J, Roviello G, Iannone LF, Atzeni A, et al. Gut microbiome modulation and faecal microbiota transplantation following allogenic hematopoietic stem cell transplantation. Cancers. 2021;13(18):4665. http://doi.org/10.3390/cancers13184665
Borrego-Ruiz A, Borrego JJ. Early-life gut microbiome development and its potential long-term impact on health outcomes. Microbiome Res Rep. 2025;4(2). https://doi.org/10.20517/mrr.2024.78
Borrego-Ruiz A, Borrego JJ. Nutritional and microbial strategies for treating acne, alopecia, and atopic dermatitis. Nutrients. 2024;16(20):3559. http://doi.org/10.3390/nu16203559
Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children. 2025 Jan 29;12(2):166. https://doi.org/10.3390/children12020166
Rodriguez JRD, Lu W, Papadopoulos JM, Venturelli OS, Romero PA. Engineered lysins to modulate human gut microbiome communities. Synthetic Biology; 2024 [cited 2025 Oct 2]. Available from: http://biorxiv.org/lookup/doi/10.1101/2024.05.14.594189
Qu J, Meng F, Wang Z, Xu W. Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies. J Microbiol Biotechnol. 2024 Dec 28;34(12):2413–24. https://doi.org/10.4014/jmb.2405.05019
Dharmaratne P, Rahman N, Leung A, Ip M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and meta-analysis. Ann Med. 2021;53(1):662–681. http://doi.org/10.1080/07853890.2021.1910250
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev. 2023;52(15):5172–5254. http://doi.org/10.1039/D3CS00191A
Peroni DG, Morelli L. Probiotics as adjuvants in vaccine strategy: is there more room for improvement? Vaccines (Basel). 2021;9(8):811. http://doi.org/10.3390/vaccines9080811
Brooks JP. Challenges for case-control studies with microbiome data. Ann Epidemiol. 2016;26(5):336–341.e1. http://doi.org/10.1016/j.annepidem.2016.03.008
Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: implications for health, disease, and therapeutic interventions. Medicine (Baltimore). 2024;103(19):e38088. http://doi.org/10.1097/MD.0000000000038088
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any future for faecal microbiota transplantation as a novel strategy for gut microbiota modulation in human and veterinary medicine? Life (Basel). 2022;12(5):723. http://doi.org/10.3390/life12050723
Berlanda M, Innocente G, Simionati B, Di Camillo B, Facchin S, Giron M, et al. Faecal microbiome transplantation as a solution to chronic enteropathies in dogs: a case study of beneficial microbial evolution. Animals (Basel). 2021;11(5):1433. http://doi.org/10.3390/ani11051433
Klatt NR, Broedlow C, Osborn JM, Gustin AT, Dross S, O’Connor MA, et al. Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. npj Vaccines. 2021;6(1):34. http://doi.org/10.1038/s41541-021-00303-7
Gonçalves JIB, Borges TJ, De Souza APD. Microbiota and the response to vaccines against respiratory virus. Front Immunol. 2022;13:889945. http://doi.org/10.3389/fimmu.2022.889945
Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding host immunity and the gut microbiota inspires the new development of vaccines and adjuvants. Pharmaceutics. 2021;13(2):163. http://doi.org/10.3390/pharmaceutics13020163
Kneis B, Wirtz S, Weber K, Denz A, Gittler M, Geppert C, et al. Colon cancer microbiome landscaping: differences in right- and left-sided colon cancer and a tumor microbiome-ileal microbiome association. Int J Mol Sci. 2023;24(4):3265. http://doi.org/10.3390/ijms24043265
Nearing JT, Comeau AM, Langille MGI. Identifying biases and their potential solutions in human microbiome studies. Microbiome. 2021;9(1):113. http://doi.org/10.1186/s40168-021-01059-0
Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–232. http://doi.org/10.1016/j.cell.2019.12.025
Kleine-Bardenhorst S, Berger T, Klawonn F, Vital M, Karch A, Rübsamen N. Data analysis strategies for microbiome studies in human populations: a systematic review of current practice. mSystems. 2021;6(1):e01154-20. http://doi.org/10.1128/mSystems.01154-20
Ilan Y. Why targeting the microbiome is not so successful: can randomness overcome the adaptation that occurs following gut manipulation? Clin Exp Gastroenterol. 2019;12:209–217. http://doi.org/10.2147/CEG.S203951
Lampeter T, Love C, Tang TT, Marella AS, Lee HY, Oganyan A, et al. Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome. Gut Microbes. 2023;14:e13.
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, et al. Factors influencing microbiota in modulating vaccine immune response: a long way to go. Vaccines (Basel). 2023;11(10):1609. http://doi.org/10.3390/vaccines11101609
Joshi D, Chbib C, Uddin MN, D’Souza MJ. Evaluation of microparticulate (S)-4,5-dihydroxy-2,3-pentanedione (DPD) as a potential vaccine adjuvant. AAPS J. 2021;23(4):84. http://doi.org/10.1208/s12248-021-00593-8
Liu Z, Hosomi K, Kunisawa J. Utilization of gut environment-mediated control system of host immunity in the development of vaccine adjuvants. Vaccine. 2022;40(36):5399–5403. http://doi.org/10.1016/j.vaccine.2022.07.040
Caminero A, Tropini C, Valles-Colomer M, Shung DL, Gibbons SM, Surette MG, et al. Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI. Nat Rev Gastroenterol Hepatol. 2025. http://doi.org/10.1038/s41575-025-01100-9
Tran VA, Vo V, Dang VQ, Vo GNL, Don TN, Doan VD, et al. Nanomaterial for adjuvants vaccine: practical applications and prospects. Indones J Chem. 2024;24(1):284.
Suk KT, Kim DJ. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2019;13(3):193–204. http://doi.org/10.1080/17474124.2019.1569512
Zhang H, Heng X, Yang H, Rao Y, Yao L, Zhu Z, et al. Metal-free atom transfer radical polymerization to prepare recyclable micro-adjuvants for dendritic cell vaccine. Angew Chem Int Ed Engl. 2024;63(24):e202402853. http://doi.org/10.1002/anie.202402853
Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human coronavirus infection. J Inorg Biochem. 2021;219:111454. http://doi.org/10.1016/j.jinorgbio.2021.111454
Cruz CS, Ricci MF, Vieira AT. Gut microbiota modulation as a potential target for the treatment of lung infections. Front Pharmacol. 2021;12:724033. http://doi.org/10.3389/fphar.2021.724033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hareg Zewdu Alehegn, Philbert Nzeyimana, Alhagie Drammeh, Rukayya Garba Anchau, Jibrin Abdulkadir, Idris Bello, O.A. Ogabidu, Danna Saleh Danna, Rufa’i Salihu, M.G. Jocthan, Mary Bernad, Ini Edeh, Jibrin Muhammad Yelwa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
