In vitro Antioxidant Potential of Hyphaene thebaica Pulp Bioactive Fraction

Authors

  • Amina Lawal Garba Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Aminu Jibril Sufyan Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Aisha Abubakar Jinjiri Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Zainab Bello Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Nafisa Isiyaka Rabiu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Amina Abdulmalik Juda Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Husna Usman Turadu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Fatima AbdulGaffar Nasir Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Innocent Ojeba Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Haruna Bala Tsoho Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Abba Babandi Medical Biochemistry Unit, Faculty of Basic Medical Sciences, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v13i2.1156

Keywords:

Oxidative stress, Plant-based antioxidant, Phytochemicals, Ultrasound-assisted extraction, Chromatography

Abstract

Oxidative stress underlies the development of several chronic disorders, prompting interest in plant-based antioxidants with defined chemical composition and biological efficacy. This study investigated the antioxidant potential of Hyphaene thebaica pulp through integrated phytochemical quantification, spectroscopic characterization, chromatographic profiling, and in vitro antioxidant assays. The pulp exhibited measurable total phenolic content (19.90 ± 2.20 mg/g) and remarkably high total flavonoid content (615.94 ± 6.36 mg/g), indicating a substantial pool of redox-active metabolites. FTIR analysis of the aqueous fraction revealed characteristic absorption bands corresponding to hydroxyl, carbonyl, aliphatic, aromatic, nitro, and amine functional groups, supporting the presence of phenolics, flavonoids, fatty acids, and related antioxidant-associated constituents. GC–MS profiling identified compounds with reported antioxidant relevance, including oleic acid, tetradecanoic acid, long-chain aliphatic alcohols, and flavone-related structures, suggesting multiple antioxidant mechanisms. Antioxidant assays demonstrated solvent-dependent activity, with ethyl acetate extract showing the strongest DPPH radical scavenging activity (IC₅₀ = 4.19 ± 0.92 µg/mL), followed by chloroform and aqueous fractions, while the crude extract exhibited comparatively weaker activity. Total antioxidant capacity further confirmed superior activity of the ethyl acetate fraction (729.16 ± 3.21 µg/mL), indicating enrichment of potent antioxidants in semi-polar solvents. Collectively, the findings suggest that the antioxidant activity of H. thebaica pulp arises from the synergistic action of phenolic and flavonoid compounds alongside lipid-derived constituents, providing a mechanistic basis for its potential application as a natural antioxidant source.

References

Rao MJ, Duan M, Zhou C, Jiao J, Cheng P, Yang L, et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Vol. 11, Horticulturae. 2025. p. 477. http://dx.doi.org/10.3390/horticulturae11050477

.

Taha GA, Abdel-Farid IB, Elgebaly HA, Mahalel UA, Sheded MG, Bin-Jumah M, et al. Metabolomic Profiling and Antioxidant, Anticancer and Antimicrobial Activities of Hyphaene thebaica. Vol. 8, Processes. 2020. p. 266. http://dx.doi.org/10.3390/pr8030266

Gharb LA, Fadhel LZ. Antioxidant activity of two different extracts from Doum (Hyphaene thebaica) fruits. IOSR J Pharm Biol Sci. 2018;13(4):30–3. 10.9790/3008-1304033033

Abd-ELmageed SM, Abushady HM, Amin AA. Antibacterial and antioxidant activities of Physalis peruviana and Hyphaene thebaica extracts. African J Biol Sci. 2019;15(1):73–86. http://dx.doi.org/10.21608/ajbs.2019.63997

Hsu B, Coupar IM, Ng K. Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food Chem . 2006;98(2):317–28. http://dx.doi.org/10.1016/j.foodchem.2005.05.077

Walter MF, Jacob RF, Jeffers B, Ghadanfar MM, Preston GM, Buch J, et al. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol. 2004;44(10):1996–2002. http://dx.doi.org/10.1016/j.jacc.2004.08.029

Datti Y, Ibrahim M, Salihu I, Abdulhadi M, Muhammad SM, Abubakar SA, et al. Mineral Content, Proximate Composition and the Antioxidant Properties of the Ethanol Extract of Hyphaene thebaica L. from Gezawa Town, Kano State, Nigeria. Asian J Appl Chem Res. 2020;(July 2020):33–40. http://dx.doi.org/10.9734/ajacr/2020/v6i230157

Hao, J., Wang, Z., Jia, Y., Sun, L., Fu, Z., Zhao, M., Li, Y., Yuan, N., Cong, B., Zhao, L., & Ge G. Optimization of ultrasonic-assisted extraction of flavonoids from Lactuca indica L. cv. Mengzao and their antioxidant properties. Front Nutr. 2023;10. http://dx.doi.org/10.3389/fnut.2023.1065662

Al-Haj Ibrahim H. Introductory Chapter: Fractionation. Fractionation. 2019;(January). http://dx.doi.org/10.5772/intechopen.78050

Ordóñez JL, Callejón RM, Morales ML, García-Parrilla MC. A survey of biogenic amines in vinegars. Food Chem. 2013;141(3):2713–2719. http://dx.doi.org/10.1016/j.foodchem.2013.05.087

Wolfe, K., Wu, X., & Liu RH. Antioxidant Activity of Apple Peels. J Agric Food Chem. 2003;51(3):609–614. http://dx.doi.org/10.1021/jf020782a

Pei-Xia L, Dong-Hao H, Meng-Yu G, Yuan-Feng S, Meng-Lin L, Yi H. Comparative Study on Dpph Free Radical Scavenging Activity of 25 Kinds of Traditional Chinese Medicinal Plants. European J Med Plants. 2019;28(2):1–6. http://dx.doi.org/10.9734/ejmp/2019/v28i230129

Guthrie RD. Introduction to Spectroscopy (Pavia, Donald; Lampman, Gary M.; Kriz, George S., Jr.). J Chem Educ . 1979 Oct 1;56(10):A323 http://dx.doi.org/10.1021/ed056pa323.2

Jahan I, Tona MR, Sharmin S, Sayeed MA, Tania FZ, Paul A, et al. GC-MS phytochemical profiling, pharmacological properties, and in silico studies of chukrasia velutina leaves: A novel source for bioactive agents. Molecules. 2020;25(15). http://dx.doi.org/10.3390/molecules25153536

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford university press; 2015. http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001

Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290–302. http://dx.doi.org/10.1021/jf0502698

Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J Funct Foods. 2015;18:820–97. http://dx.doi.org/10.1016/j.jff.2015.06.018

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. http://dx.doi.org/10.1017/jns.2016.41

Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56. http://dx.doi.org/10.1016/0891-5849(95)02227-9

Wolfe KL, Liu RH. Structure− activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem. 2008;56(18):8404–11. http://dx.doi.org/10.1021/jf8013074

El-Beltagi HS, Mohamed HI, Megahed BMH, Gamal M, Safwat G. Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Fresenius Environ Bull. 2018;27(9):6369–78. http://dx.doi.org/10.1007/s10343-019-00456-8

Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757–81. http://dx.doi.org/10.1016/j.jff.2015.01.047

Dahiru MM, Nadro MS. Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo J Pharm. 2022;5(4):325–33. http://dx.doi.org/10.33084/bjop.v5i4.3632

John AO. Comparative Evaluation of Proximate, Mineral, Vitamins, Phytochemical and Antioxidant Properties of Pulp and Seeds of Doum Palm (Hyphaene thebaica) in India. Glob Int J Innov Res. 2024;2(5):960–73. http://dx.doi.org/10.23880/beba-16000229

Inuwa SZ, Ndife J, Bamalli Z. Review on functional values of doum palm fruit. Dutse J Pure Appl Sci. 2023;9(3a):29–40. http://dx.doi.org/10.4314/dujopas.v9i3a.4

Salih NKEM, Yahia EM. Nutritional value and antioxidant properties of four wild fruits commonly consumed in Sudan. Int Food Res J. 2015;22(6):2389–95. http://dx.doi.org/10.1080/15538362.2024.2348703

Frankel EN. Lipid Oxidation: Second Edition. 2005. 1–470 p. http://dx.doi.org/10.1533/9780857097927

Coates J. Interpretation of infrared spectra, a practical approach. Encycl Anal Chem. 2000;12:10815–37. http://dx.doi.org/10.1002/9780470027318.a5606

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med. 2011;8(1). http://dx.doi.org/10.4314/ajtcam.v8i1.60483

Wei CC, Yen PL, Chang ST, Cheng PL, Lo YC, Liao VHC. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. PLoS One. 2016;11(6):e0157195. http://dx.doi.org/10.1371/journal.pone.0157195

Fratianni F, d’Acierno A, Ombra MN, Amato G, De Feo V, Ayala-Zavala JF, et al. Fatty Acid Composition, Antioxidant, and in vitro Anti-inflammatory Activity of Five Cold-Pressed Prunus Seed Oils, and Their Anti-biofilm Effect Against Pathogenic Bacteria. Front Nutr . 2021;Volume 8-. http://dx.doi.org/10.3389/fnut.2021.775751

Abdalla MA. Chemical Composition and Antioxidant Activity of Hyphaene thebaica. Neelain University; 2018.

Marrazzo P, O’Leary C. Repositioning natural antioxidants for therapeutic applications in tissue engineering. Bioengineering. 2020;7(3):104. http://dx.doi.org/10.3390/bioengineering7030104

Valgimigli L. Lipid peroxidation and antioxidant protection. Biomolecules. 2023;13(9):1291. http://dx.doi.org/10.3390/biom13091291

Downloads

Published

12.12.2025

How to Cite

Garba, A. L. ., Sufyan, A. J. ., Jinjiri, A. A. ., Musa, Z. B. ., Rabiu, N. I., Juda, A. A., Turadu, H. U. ., Nasir, F. A. ., Musa, I. O. ., Tsoho, H. B. ., Babandi, A., & Yakasai, H. M. . (2025). In vitro Antioxidant Potential of Hyphaene thebaica Pulp Bioactive Fraction . Journal of Biochemistry, Microbiology and Biotechnology, 13(2), 131–137. https://doi.org/10.54987/jobimb.v13i2.1156

Issue

Section

Articles