Chemical and Functional Characterization of Syzygium cumini Leaves with Antioxidant Potential

Authors

  • Aisha Abubakar Jinjiri Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Zainab Bello Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Aminu Jibril Sufyan Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Nafisa Isiyaka Rabiu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Amina Abdulmalik Juda Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Husna Usman Turadu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Fatima AbdulGaffar Nasir Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Amina Lawal Garba Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Innocent Ojeba Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Miracle Uwa Livinus Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Haruna Bala Tsoho Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Abba Babandi Medical Biochemistry Unit, Faculty of Basic Medical Sciences, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v13i2.1154

Keywords:

Syzygium cumini, Antioxidant activity, Phenolic compounds, GC-MS profiling, Oxidative stress

Abstract

Natural antioxidants found in plants have thus proven to be important potential therapeutic agents against oxidative damage caused by free radicals. This study evaluated the antioxidant properties and functional characteristics of the bioactive compounds in Syzygium cumini leaves via in vitro and in vivo approach. The total phenolic content (TPC: 631.43 ± 163.90 µg/mL) was found to be higher than flavonoid content (TFC: 38.05 ± 3.02 µg/mL). Based on the IC50 values, ethanolic fraction was shown to be most effective in quenching electron pairs of DPPH radicals (IC50: 0.02 ± 0.004 µg/mL), higher than methanolic extract (IC50 = 1.49 ± 0.90 µg/mL) and other fractions. The total antioxidant potential was also high in ethanolic fraction (1327 ± 5.89 µg/mL). Similarly, in vivo studies in type 2 diabetic rat model showed a reduction in the activity of catalase and a subsequent increase in malondialdehyde (MDA) content. However, S. cumini treatment abolished this antioxidant imbalance in a dose-dependent manner. The 1000 mg/kg dose resulted in a 27.28 ± 2.82 kU increase in catalase activity and a 0.67 ± 0.02 nmol/mg reduction in MDA content. The FTIR spectroscopy revealed strong O-H stretching peaks around 3260 cm⁻¹ typical for phenolic compounds. Additionally, peaks were observed for C=O, C-O, and N-H bonds. Interestingly, GC-MS profiling further confirmed the presence of strong antioxidant phenolic compounds such as catechol, 1,2,3-benzenetriol, and 3,4,5-trihydroxybenzoic acid methyl ester. Besides this, moderate levels of antioxidants with lipid solubility were also found. Derivatives of linoleic acid, oleic acid, and octadecadienoic acid belonged to this group. This indicates a combination of hydrophilic radical scavenging capacity.

References

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. https://doi.org/10.1161/circresaha.110.223545

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol cell Biol. 2020;21(7):363–83. http://dx.doi.org/10.1038/s41580-020-0230-3

Goyal S, Thirumal D, Singh S, Kumar D, Singh I, Kumar G, et al. Basics of antioxidants and their importance. Antioxidants Nature’s Def Against Dis. 2025;1–20. http://dx.doi.org/10.1002/9781394270576.ch1

Hossain S, Rahaman A, Nahar T, Basunia MA, Mowsumi FR, Uddin B, et al. Syzygium cumini (L.) skeels seed extract ameliorates in vitro and in vivo oxidative potentials of the brain cerebral cortex of alcohol-treated rats: Syzygium cumini (L.) skeels seed extract inhibits oxidative potentials of brain. Orient Pharm Exp Med. 2012;12(1):59–66. http://dx.doi.org/10.1007/s13596-011-0044-0

Borges RM, Bitencourt PER, Stein CS, Bochi G V, Boligon A, Moresco RN, et al. Leaves and seeds of Syzygium cumini extracts produce significant attenuation of 2, 2 azobis-2-amidinopropane dihydrochloride-induced toxicity via modulation of ectoenzymes and antioxidant activities. J Appl Pharm Sci. 2017;7(6):37–48. http://dx.doi.org/10.7324/japs.2017.70606

Hossain Z, Khanam M, Sarker AR. Out-of-pocket expenditure among patients with diabetes in Bangladesh: a nation-wide population-based study. Heal Policy Open. 2023;5:100102. http://dx.doi.org/10.1016/j.hpopen.2023.100102

Thapa CB, Paudel MR, Bhattarai HD, Pant KK, Devkota HP, Adhikari YP, et al. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon. 2022;8(2). http://dx.doi.org/10.1016/j.heliyon.2022.e08982

Srivastava N, Singh A, Kumari P, Nishad JH, Gautam VS, Yadav M, et al. Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials. In: Natural bioactive compounds. Elsevier; 2021. p. 409–33. http://dx.doi.org/10.1016/b978-0-12-820655-3.00021-5

Mukherjee S, Rizal S, Singh S, Hooi A, Ghosh PK, Hossain A, et al. Methodologies for identification, purification, and characterization of bacterial secondary metabolites. In: Bacterial secondary metabolites. Elsevier; 2024. p. 381–97. http://dx.doi.org/10.1016/b978-0-323-95251-4.00004-1

Ordonez AAL, Gomez JD, Vattuone MA. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006;97(3):452–8. http://dx.doi.org/10.1016/j.foodchem.2005.05.024

Wolfe K, Wu X, Liu RH. Antioxidant Activity of Apple Peels. J Agric Food Chem. 2003;51(3):609–614. http://dx.doi.org/10.1021/jf020782a

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. http://dx.doi.org/10.3390/molecules27041326

Shangari N, O’Brien PJ. Catalase activity assays. Curr Protoc Toxicol. 2006;27(1):7. http://dx.doi.org/10.1002/0471140856.tx0707s27

Flohe L. [10] Superoxide dismutase assays. In: Methods in enzymology. Elsevier; 1984. p. 93–104. http://dx.doi.org/10.1016/s0076-6879(84)05013-8

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017;524:13–30. http://dx.doi.org/10.1016/j.ab.2016.10.021

Mabasa XE, Mathomu LM, Madala NE, Musie EM, Sigidi MT. Molecular Spectroscopic (FTIR and UV‐Vis) and Hyphenated Chromatographic (UHPLC‐qTOF‐MS) Analysis and In Vitro Bioactivities of the Momordica balsamina Leaf Extract. Biochem Res Int. 2021;2021(1):2854217. http://dx.doi.org/10.1155/2021/2854217

Pasternak Z, Avissar YY, Ehila F, Grafit A. Automatic detection and classification of ignitable liquids from GC–MS data of casework samples in forensic fire-debris analysis. Forensic Chem. 2022;29:100419. http://dx.doi.org/10.1016/j.forc.2022.100419

Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Reports. 2019;24:e00370. http://dx.doi.org/10.1016/j.btre.2019.e00370

Pinchuk I, Shoval H, Dotan Y, Lichtenberg D. Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids. 2012;165(6):638–47. http://dx.doi.org/10.1016/j.chemphyslip.2012.05.003

Mensah MLK, Komlaga G, Forkuo AD, Firempong C, Anning AK, Dickson RA. Toxicity and Safety Implications of Herbal Medicines. Herb Med. 2019;63. http://dx.doi.org/10.5772/intechopen.72437

Tambe BD, Pedhekar P, Harshali P. Phytochemical screening and antibacterial activity of Syzygium cumini (L.)(Myrtaceae) leaves extracts. Asian J Pharm Res Dev. 2021;9(5):50–4. http://dx.doi.org/10.22270/ajprd.v9i5.1023

Dash JR, Kar B, Pattnaik G. In-silico, in-vitro and in-vivo Biological Activities of Flavonoids for the Management of Type 2 Diabetes. Curr Drug Discov Technol. 2024;21(5):80–91. http://dx.doi.org/10.2174/0115701638290819231228081120

Imran A, Ye S, Li JA, Ajaj R, Rauf A, Ahmad Z, et al. LC‐ESI‐QTOF‐MS/MS Characterization of Phenolic Compounds in the Stem, Roots, and Leaves of Syzygium cumini and Their Antioxidant Potential. Food Sci Nutr. 2025;13(4):e70112. http://dx.doi.org/10.1002/fsn3.70112

Itam A, Wati MS, Agustin V, Sabri N, Jumanah RA, Efdi M. Comparative study of phytochemical, antioxidant, and cytotoxic activities and phenolic content of Syzygium aqueum (Burm. f. Alston f.) extracts growing in West Sumatera Indonesia. Sci World J. 2021;2021(1):5537597. http://dx.doi.org/10.1155/2021/5537597

Qamar M, Akhtar S, Ismail T, Wahid M, Abbas MW, Mubarak MS, et al. Phytochemical Profile, Biological Properties, and Food Applications of the Medicinal Plant Syzygium cumini. Food. 2022;11(378):1–21. http://dx.doi.org/10.3390/foods11030378

Asanaliyar M, Nadig P. Syzygium cumini (jamun) therapeutic potential: a comprehensive review on phytochemical constituents and emphasis on its pharmacological actions related to diabetic intervention. Int J Basic Clin Pharmacol. 2020;9(2):363. http://dx.doi.org/10.18203/2319-2003.ijbcp20200192

Eshwarappa RSB, Iyer RS, Subbaramaiah SR, Richard SA, Dhananjaya BL. Antioxidant activity of Syzygium cumini leaf gall extracts. BioImpacts BI. 2014;4(2):101. http://dx.doi.org/10.4103/0974-8490.147225

de Jesus Soares J, da Silva Rosa A, Motta PR, Cibin FWS, Roehrs R, Denardin ELG. Protective role of Syzygium cumini leaf extracts against paraquat-induced oxidative stress in superoxide-dismutase-deficient Saccharomyces cerevisiae strains. Acta Sci Biol Sci. 2019;41:47139. http://dx.doi.org/10.4025/actascibiolsci.v41i1.47139

Akullo JO, Kiage-Mokua BN, Nakimbugwe D, Kinyuru J. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon. 2023;9(8). http://dx.doi.org/10.1016/j.heliyon.2023.e18806

Sadowska-Bartosz I, Bartosz G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. http://dx.doi.org/10.3390/pr10102031

Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer’s Perspective. Plants. 2022;11(11). http://dx.doi.org/10.3390/plants11111476

Patel H, Mandle N. Pharmacodynamic Evaluation of Syzygium cumini Extract in Experimental Diabetic Models. Int J Pharmacogn Herb Drug Technol. 2025;02(04):1–13. https://aktpublication.com/index.php/ijphdt/article/view/63

Kaur D, Yousuf B, Qadri OS. Syzygium cumini anthocyanins: recent advances in biological activities, extraction, stability, characterisation and utilisation in food systems. Food Prod Process Nutr. 2024;6(1). http://dx.doi.org/10.1186/s43014-023-00177-6

Nahid S, Mazumder K, Rahman Z, Islam S, Rashid MH, Kerr PG. Cardio- and hepato-protective potential of methanolic extract of Syzygium cumini (L.) Skeels seeds: A diabetic rat model study. Asian Pac J Trop Biomed. 2017;7(2):126–33. http://dx.doi.org/10.1016/j.apjtb.2016.11.025

Seker U, Kaya S, Kandemir SI, Sener D, Demirel OU, Nergiz Y. Effects of black cumin seed oil on oxidative stress and expression of membrane-cytoskeleton linker proteins, radixin, and moesin in streptozotocin-induced diabetic rat liver. Hepatol Forum. 2022;3(1):21–6. http://dx.doi.org/10.14744/hf.2021.2021.0035

Feng Y, Chen W, Jia Y, Tian Y, Zhao Y, Long F, et al. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale. 2016;8(27):13223–7. http://dx.doi.org/10.1039/c6nr03317b

Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, et al. A brief introduction to chemical reaction optimization. Chem Rev. 2023;123(6):3089–126. http://dx.doi.org/10.1021/acs.chemrev.2c00798

Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56. http://dx.doi.org/10.1016/0891-5849(95)02227-9

Kiokias S, Proestos C, Oreopoulou V. Phenolic Acids of Plant Origin-A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods (Basel, Switzerland). 2020 Apr;9(4). http://dx.doi.org/10.3390/foods9040534

Marinova E, Yanishlieva N. Antioxidant activity and mechanism of action of some phenolic acids at ambient and high temperature. Food Chem - FOOD CHEM. 2003 May 1;81:189–97. http://dx.doi.org/10.1016/s0308-8146(02)00411-9

Richard D, Kefi K, Barbe U, Bausero P, Visioli F. Polyunsaturated fatty acids as antioxidants. Pharmacol Res. 2008 Jun;57(6):451–5. http://dx.doi.org/10.1016/j.phrs.2008.05.002

Tsaluchidu S, Puri BK. Fatty acids and oxidative stress. Ann Gen Psychiatry [Internet]. 2008;7(1):S86. https://doi.org/10.1186/1744-859X-7-S1-S86

Downloads

Published

12.12.2025

How to Cite

Jinjiri, A. A. ., Musa, Z. B. ., Sufyan, A. J. ., Rabiu, N. I., Juda, A. A., Turadu, H. U. ., Nasir, F. A. ., Garba, A. L. ., Musa, I. O. ., Livinus, M. U., Tsoho, H. B. ., Babandi, A., & Yakasai, H. M. . (2025). Chemical and Functional Characterization of Syzygium cumini Leaves with Antioxidant Potential. Journal of Biochemistry, Microbiology and Biotechnology, 13(2), 116–124. https://doi.org/10.54987/jobimb.v13i2.1154

Issue

Section

Articles