Health Benefits of Peroxisome Proliferator-Activated Receptors (PPARs): A Narrative Review
DOI:
https://doi.org/10.54987/jobimb.v13i2.1130Keywords:
Peroxisome proliferator-activated receptors, Nuclear receptors, Transcriptional regulation, PPAR-dependent suppression, TherapyAbstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play a crucial role in several physiological processes, including the metabolism of carbohydrates, proteins, and lipids, as well as regulating cellular differentiation, development, and tumorigenesis. Recent research has increasingly focused on the role of PPARs in maintaining physiological homeostasis and their potential as therapeutic targets. These receptors regulate gene expression involved in lipid and glucose metabolism, inflammation, and cellular differentiation. This narrative review aims to assess the current understanding of the health benefits of PPARs, their mechanisms of action, clinical applications, and challenges. The review includes findings from various clinical and experimental studies, along with insights from previous reviews. An exhaustive bibliographic survey was conducted which utilized search engines, such as Pubmed, Scopus, Web of Science, Science direct, Medline, Google Scholar, and ResearchGate. The search strategy involved the use of some key terms including, PPAR, nuclear receptors, transcriptional regulation, PPAR-dependent suppression. PPARs have been shown to exert significant pharmacological effects, especially in the treatment of metabolic disorders, such as diabetes and obesity. They have the ability to modulate cell differentiation, development and inflammation. While there are challenges in optimizing their efficiency, clinical trial studies suggest that PPARs will offer a promising glimpse into the future of personalized and targeted therapies. This narrative review highlights the benefits of PPARs in managing metabolic disorders, cardiovascular diseases, inflammation and even cancer. Further clinical studies are necessary to understand the adverse effects of these receptors and how they can be optimized to maintain their efficiency.
References
Doggrell S. Do peroxisome proliferation receptor-γ antagonists have clinical potential as combined antiobesity and antidiabetic drugs? Expert Opin Investig Drugs. 2003;12(4):713-6. https://doi.org/10.1517/13543784.12.4.713
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JY, Tan NS. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int J Mol Sci. 2019;20(20):5055. https://doi.org/10.3390/ijms20205055
Mohajan D, Mohajan HK. Peroxisome proliferator-activated receptor γ (PPAR γ): a systemic insulin sensitizer associated with decreased risk of type 2 diabetes. J Innov Med Res. 2024;3(2):18-24. https://www.paradigmpress.org/jimr/article/view/1114
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207-21. https://doi.org/10.3322/caac.20078
Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator‐activated receptor‐γ and plasminogen activator inhibitor‐1. PPAR Res. 2009; 345320.https://doi.org/10.1155/2009/345320
Ament Z, Masoodi M, Griffin JL. Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer. Genome Med. 2012;4(4):32. https://doi.org/10.1186/gm331
Sharma AM, Staels B. Peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92(2):386-95. https://doi.org/10.1210/jc.2006-1268
Schmidt MV, Brüne B, von Knethen A. The nuclear hormone receptor PPARγ as a therapeutic target in major diseases. ScientificWorldJournal. 2010;10:2181-97. https://doi.org/10.1100/tsw.2010.213
Berthier A, Johanns M, Zummo FP, Lefebvre P, Staels B. PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis. 2021;1867(5):166097.https://doi.org/10.1016/j.bbadis.2021.166097
Peeters A, Baes M. Role of PPARα in hepatic carbohydrate metabolism. PPAR Res. 2010;2010:572405.
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. https://doi.org/10.1155/2010/572405
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, et al. Molecular actions of PPAR α in lipid metabolism and inflammation. Endocr Rev. 2018;39(5):760-802. https://doi.org/10.1210/er.2018-00064
Derosa G, Sahebkar A, Maffioli P. The role of various peroxisome proliferator‐activated receptors and their ligands in clinical practice. J Cell Physiol. 2018;233(1):153-61. https://doi.org/10.1002/jcp.25804
Liu S, Yuan X, Su H, Liu F, Zhuang Z, Chen Y, et al. ZNF384: a potential therapeutic target for Psoriasis and Alzheimer's Disease through inflammation and metabolism. Front Immunol. 2022;13:892368. https://doi.org/10.3389/fimmu.2022.892368
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The role of PPAR alpha in the modulation of innate immunity. Int J Mol Sci. 2021;22(19):10545. https://doi.org/10.3390/ijms221910545
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-35. https://doi.org/10.1146/annurev.med.53.082901.104018
Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106-18. https://doi.org/10.1056/NEJMra041001
Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54(8):2460-70. https://doi.org/10.2337/diabetes.54.8.2460
Luquet S, Gaudel C, Holst D. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta. 2005;1740:313-7. https://doi.org/10.1016/j.bbadis.2004.11.01
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res. 2023;192:106786. https://doi.org/10.1016/j.phrs.2023.106786
Pan J, Zhou W, Xu R, Xing L, Ji G, Dang Y. Natural PPARs agonists for the treatment of nonalcoholic fatty liver disease. Biomed Pharmacother. 2022;151:113127. https://doi.org/10.1016/j.biopha.2022.113127
Da'adoosh B, Marcus D, Rayan A, King F, Che J, Goldblum A. Discovering highly selective and diverse PPAR-delta agonists by ligand based machine learning and structural modeling. Sci Rep. 2019;9(1):1106. https://doi.org/10.1038/s41598-019-38508-8
Peters JM, Gonzalez FJ. Why toxic equivalency factors are not suitable for peroxisome proliferator-activated receptor alpha (PPARα) agonists. Toxicol Appl Pharmacol. 2009;236(2):152-8. https://doi.org/10.1021/tx200316x
Wang D, DuBois RN. Peroxisome proliferator-activated receptors and progression of colorectal cancer. PPAR Res. 2008;2008:1-9. https://doi.org/10.1155/2008/931074
Stephen RL, Darby S. PPARβ/δ in human cancer. PPAR Res. 2009;2009:1-11.
Michalik L, Wahli W. PPARs mediate lipid signaling in inflammation and cancer. PPAR Res. 2007;2007:1-13. https://doi.org/10.1155/2008/134059
Janani C, Moola AK, Shobana G. PPAR gamma agonists–plant compounds. J Stress Physiol Biochem. 2023;19(4):163-77.
Titus C, Hoque MT, Bendayan R. PPAR agonists for the treatment of neuroinflammatory diseases. Trends Pharmacol Sci. 2024;45(1):9-23. https://doi.org/10.1016/j.tips.2023.11.004
Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora's Box? Pharmacol Res. 2007;56(2):91-8. https://doi.org/10.1016/j.phrs.2007.06.008
Kim IS, Silwal P, Jo EK. Peroxisome proliferator-activated receptor-targeted therapies: challenges upon infectious diseases. Cells. 2023;12(4):650. https://doi.org/10.3390/cells12040650
Capelli D, Cerchia C, Montanari R, Loiodice F, Tortorella P, Laghezza A, et al. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Sci Rep. 2016;6:34792. https://doi.org/10.1038/srep34792
Lin Y, Wang Y, Li PF. PPARα: an emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne). 2022;13:1074911. https://doi.org/10.3389/fendo.2022.1074911
Bugge A, Mandrup S. Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation. PPAR Res. 2010;2010:e169506. https://doi.org/10.1155/2010/169506
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, et al. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun. 2023;14(1):2600. https://doi.org/10.1038/s41467-023-38342-w
Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, et al. Coactivators in PPAR-regulated gene expression. PPAR Res. 2010;2010:e250126. https://doi.org/10.1155/2010/250126
Hassan FU, Nadeem A, Li Z, Javed M, Liu Q, Azhar J, et al. Role of peroxisome proliferator-activated receptors (PPARs) in energy homeostasis of dairy animals: exploiting their modulation through nutrigenomic interventions. Int J Mol Sci. 2021;22(22):12463. https://doi.org/10.3390/ijms222212463
Antonosante A, d'Angelo M, Castelli V, Catanesi M, Iannotta D, Giordano A, et al. The involvement of PPARs in the peculiar energetic metabolism of tumor cells. Int J Mol Sci. 2018;19(7):1907. https://doi.org/10.3390/ijms19071907
Nakrani MN, Wineland RH, Anjum F. Physiology, glucose metabolism. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: http://www.ncbi.nlm.nih.gov/books/NBK560599
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, et al. PPARs in atherosclerosis: the spatial and temporal features from mechanism to druggable targets. J Adv Res. 2024. https://doi.org/10.1016/j.jare.2024.03.020
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of phytochemicals on PPAR receptors: implications for disease treatments. PPAR Res. 2022;2022:4714914. https://doi.org/10.1155/2022/4714914
Manickam R, Duszka K, Wahli W. PPARs and microbiota in skeletal muscle health and wasting. Int J Mol Sci. 2020;21(21):8056. https://doi.org/10.3390/ijms21218056
Feingold KR. Introduction to lipids and lipoproteins. In: Feingold KR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/
Hong F, Pan S, Guo Y, Xu P, Zhai Y. PPARs as nuclear receptors for nutrient and energy metabolism. Molecules. 2019;24(14):2545. https://doi.org/10.3390/molecules24142545
Sobolev VV, Tchepourina E, Korsunskaya IM, et al. The role of transcription factor PPAR-γ in the pathogenesis of psoriasis, skin cells, and immune cells. Int J Mol Sci. 2022;23(17):9708. https://doi.org/10.3390/ijms23179708
Souto EB, Fangueiro JF, Fernandes AR, et al. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022;8(2):e08999. https://doi.org/10.1016/j.heliyon.2022.e0893
Hossain KR, Alghalayini A, Valenzuela SM. Current challenges and opportunities for improved cannabidiol solubility. Int J Mol Sci. 2023;24(19):14514. https://doi.org/10.3390/ijms241914514
Wu L, Yan C, Czader M, et al. Inhibition of PPARγ in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood. 2012;119(1):115-26. https://doi.org/10.1182/blood-2011-06-363093
Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, et al. PPARs as metabolic sensors and therapeutic targets in liver diseases. Int J Mol Sci. 2021;22(15):8298. https://doi.org/10.3390/ijms22158298
Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256-63. https://doi.org/10.2337/diacare.27.8.2096-a
Cho MC, Lee K, Paik SG, Yoon DY. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Res. 2008;2008:679137. https://doi.org/10.1155/2008/679137
Susa ST, Hussain A, Preuss CV. Drug metabolism. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK442023/
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol (Lausanne). 2021;12:624112. https://doi.org/10.3389/fendo.2021.624112
Brunmeir R, Xu F. Functional regulation of PPARs through post-translational modifications. Int J Mol Sci. 2018;19(6):1738. https://doi.org/10.3390/ijms19061738
Harmon GS, Lam MT, Glass CK. PPARs and lipid ligands in inflammation and metabolism. Chem Rev. 2011;111(10):6321-40. https://doi.org/10.1021/cr2001355
Garza AZ, Park SB, Kocz R. Drug elimination. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547662/
Kiss-Toth É, Rőszer T. PPARγ in kidney physiology and pathophysiology. PPAR Res. 2008;2008:183108. https://doi.org/10.1155/2008/183108
Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget. 2017;8(36):60704-9. https://doi.org/10.18632/oncotarget.19610
Guan Y, Zheng Y, Shao M, et al. PPARs in atherosclerosis: the spatial and temporal features from mechanism to druggable targets. J Adv Res. 2024. https://doi.org/10.1016/j.jare.2024.03.020
Pozzi A, Ibanez MR, Gatica AE, et al. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J Biol Chem. 2007;282(24):17685-95. https://doi.org/10.1074/jbc.m701429200
Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49(10):497-505. https://doi.org/10.1007/s000110050622
Palmer, C. N. A., Hsu, M.-H., Griffin, K. J., & Johnson, E. F. Novel Sequence Determinants in Peroxisome Proliferator Signaling. Journal of Biological Chemistry. 1995;270(27), 16114–16121. https://doi.org/10.1074/jbc.270.27.16114
Kaipainen, A., Kieran, M. W., Huang, S., Butterfield, C., Bielenberg, D., Mostoslavsky, G., Mulligan, R., Folkman, J., & Panigrahy, D. PPARα Deficiency in Inflammatory Cells Suppresses Tumor Growth. PLoS ONE. 2007; 2(2), e260. https://doi.org/10.1371/journal.pone.0000260
Zuo X, Peng Z, Moussalli MJ, Morris JS, Broaddus RR, Fischer SM, Shureiqi I. Targeted genetic disruption of peroxisome proliferator-activated receptor delta and colonic tumorigenesis. J Natl Cancer Inst. 2009;101(10):762-767. https://doi.org/10.1093/jnci/djp078
Wu L, Yan C, Czader M, Foreman O, Blum JS, Kapur R, Du H. Inhibition of PPARγ in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood. 2012 Jan 5;119(1):115–126. https://doi.org/10.1182/blood-2011-06-363093
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Molecular cancer. 2013 Aug 2;12(1):86. https://doi.org/10.1186/1476-4598-12-86
Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003 Mar 1;52(3):812-7. https://doi.org/10.2337/diabetes.52.3.812
Szeles L, Torocsik D, Nagy L. PPARgamma in immunity and inflammation: cell types and diseases. Biochim Biophys Acta 2007; 1771: 1014-30. https://doi.org/10.1016/j.bbalip.2007.02.005
Pascual G, Glass CK. Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab. 2006;17(8):321–327. https://doi.org/10.1016/j.tem.2006.08.005
Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, ’t Hoen PA. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res. 2010;38(16):5396–5408. https://doi.org/10.1093/nar/gkq184
Jennewein C, Kuhn AM, Schmidt MV. Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. J Immunol. 2008;181: 5646-52. https://doi.org/10.4049/jimmunol.181.8.5646
Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S. PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res. 2010;59(11):921-9. https://doi.org/10.1007/s00011-010-0203-7
Shah YM, Morimura K, Gonzalez FJ. Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G657-66. https://doi.org/10.1152/ajpgi.00381.2006
Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103-13. https://doi.org/10.1016/j.ccr.2009.01.001
Moola AK, Shobana G, Janani C. PPAR gamma agonists–plant compounds. J Stress Physiol Biochem. 2023;19(4):163-77. https://doi.org/10.4103/1673-5374.386410
Sangro B, de la Torre Aláez SP, D'Avola M. Metabolic dysfunction–associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem. 2023;79(4):869. https://doi.org/10.1007/s13105-023-00954-4
Meng F, Hao P, Du H. Regulatory T cells differentiation in visceral adipose tissues contributes to insulin resistance by regulating JAZF‐1/PPAR‐γ pathway. J Cell Mol Med. 2023;27(4):553-62. https://doi.org/10.1111/jcmm.17680
Kang H. Regulation of acetylation states by nutrients in the inhibition of vascular inflammation and atherosclerosis. Int J Mol Sci. 2023;24(11):9338. https://doi.org/10.3390/ijms24119338
Hussain F, Tahir A, Rehman HM, Wu Y, Shah M, Rashid U. Promising thiazolidinedione-thiazole based multi-target and neuroprotective hybrids for Alzheimer’s disease: Design, synthesis, in-vitro, in-vivo and in-silico studies. Eur J Med Chem. 2025 Apr 5;287:117327. https://doi.org/10.1016/j.ejmech.2025.117327
Kumar AP, P P, Kumar BP, Jeyarani V, Dhanabal SP, Justin A. Glitazones, PPAR-γ and Neuroprotection. Mini Reviews in Medicinal Chemistry. 2021 Jul 1;21(12):1457-64. https://doi.org/10.2174/1389557521666210304112403
Choudhary NS, Kumar N, Duseja A. Peroxisome proliferator-activated receptors and their agonists in nonalcoholic fatty liver disease. Journal of Clinical and Experimental Hepatology. 2019 Nov 1;9(6):731-9. https://doi.org/10.1016/j.jceh.2019.06.004
Banu S, Sur D. Role of macrophage in type 2 diabetes mellitus: macrophage polarization a new paradigm for treatment of type 2 diabetes mellitus. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2023 Jan 1;23(1):2-11. https://doi.org/10.2174/1871530322666220630093359
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiological Reviews. 2024 Jul 1;104(3):1021-60. https://doi.org/10.1152/physrev.00028.2023
Matsuo M. Regulation of cholesterol transporters by nuclear receptors. Receptors. 2023 Oct 9;2(4):204-19. https://doi.org/10.3390/receptors2040014
Alkholifi FK, Devi S, Yusufoglu HS, Alam A. The cardioprotective effect of corosolic acid in the diabetic rats: A possible mechanism of the PPAR-γ pathway. Molecules. 2023 Jan 17;28(3):929. https://doi.org/10.3390/molecules28030929
Wagner N, Wagner KD. The role of PPARs in disease. Cells. 2020 Oct 28;9(11):2367. https://doi.org/10.3390/cells9112367
Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2007 Aug 1;1771(8):915-25. https://doi.org/10.1016/j.bbalip.2007.01.007
Foley B, Doheny DL, Black MB, Pendse SN, Wetmore BA, Clewell RA, Andersen ME, Deisenroth C. Editor’s highlight: screening toxcast prioritized chemicals for PPARG function in a human adipose-derived stem cell model of adipogenesis. Toxicological Sciences. 2017 Jan 1;155(1):85-100. https://doi.org/10.1093/toxsci/kfw186
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacology & therapeutics. 2021 Mar 1;219:107705. https://doi.org/10.1016/j.pharmthera.2020.107705
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zaharadeen Muhammad Yusuf, Bashar Haruna Gulumbe, Tirmizhi Munkaila Abubakar, Yunusa Saheed, Nazeef Idris Usman, Muhammad Rabiu Sahal, Murtala Ismail Adakawa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
