Molecular Studies on Quinolone Resistant MDR E. coli Detected in Urine Specimens

Authors

  • Mahmoud Abd El-Mongy Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Menofia Governorate 32897, Egypt.
  • Marwa K. Abd El-khaliq Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Menofia Governorate 32897, Egypt.
  • Amal Sabry Othman Nutrition Department, Faculty of Applied Health Sciences Technology, October 6th University, Giza Governorate 3233102, Egypt.

DOI:

https://doi.org/10.54987/jobimb.v12i1.963

Keywords:

Escherichia coli, Multidrug resistance, Urinary tract infections, parC gene, Antimicrobial stewardship

Abstract

Multidrug-resistant (MDR) Escherichia coli is a major cause of urinary tract infections (UTIs) and represents a growing public health concern due to its resistance to multiple antibiotics. This study aimed to investigate the prevalence of MDR E. coli in urine samples and to characterize the antibiotic resistance patterns and genetic mechanisms underlying resistance. A total of 40 urine samples were collected from patients at Mbarret El-Asafra Hospital in Egypt in 2021. Of these, 30 E. coli isolates were identified and tested for antibiotic susceptibility using the disk diffusion method across six antibiotics from four different classes. Molecular analysis was performed using polymerase chain reaction (PCR) to detect the presence of the parC gene, which is associated with quinolone resistance. Out of 30 E. coli isolates, 18 (60%) exhibited multidrug resistance. The majority of MDR isolates showed resistance to fluoroquinolones (levofloxacin and ciprofloxacin) and carbapenems (meropenem), with additional resistance observed against aminoglycosides and tetracycline. The parC gene was detected in 66.7% of MDR isolates, indicating a significant genetic basis for quinolone resistance. The resistance rates and presence of the parC gene were consistent with global trends, highlighting the widespread nature of antibiotic resistance among E. coli strains. The high prevalence of MDR E. coli in urine samples underscores the urgent need for enhanced antimicrobial stewardship and alternative treatment strategies. The detection of the parC gene in a substantial proportion of MDR isolates emphasizes the importance of molecular surveillance in understanding resistance mechanisms. These findings call for comprehensive approaches to mitigate the impact of MDR pathogens and ensure effective management of UTIs in clinical settings.

References

Erjavec MS. Introductory chapter: The versatile Escherichia coli. Universe Escherichia coli. 2019. doi:10.5772/intechopen.88882.

Galindo-Méndez M. Antimicrobial resistance in Escherichia coli. Book Citation Index Web of Science™ Core Collection (BKCI). 2020. doi:10.5772/intechopen.93115.

Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: A cautionary tale for virome analyses. ISME J. 2017;11:237-247. doi:10.1038/ismej.2016.90.

Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-146. doi:10.1146/annurev.biochem.78.082907.145923.

Griffiths C. Microbiological examination in urinary tract infection. Nurs Times. 1995;91(11):33-35.

National Institute for Health and Clinical Excellence (NICE). Urinary tract infections in children: Diagnosis, treatment and long term management. 2007.

Khalil SA, El-Lakany HF, Shaaban HM. Laboratory differentiation between Streptococcus species isolated from different sources. Alex J Vet Sci. 2014;43:37-44.

Cruickshank R. Medical microbiology. 12th ed. Edinburgh: Churchill Livingstone; 1980. p. 170-189.

Freeman JT, Nimmo J, Gregory E, Tiong A, De Almeida M, McAuliffe GN, et al. Predictors of hospital surface contamination with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Patient and organism factors. Antimicrob Resist Infect Control. 2014;3(5):1-7.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; M100, 30th ed. CLSI; 2020.

Oloruntoba FP, Adabara NU, Adedeji AS, Kuta FA, Ezeonu CM. Prevalence of multidrug resistance genes in Escherichia coli isolates from patients attending four hospitals in Minna, Nigeria. Sri Lankan J Infect Dis. 2020;10(1):53-64.

Puspanadan S, Afsah-Hejri L, John YHT, Rukayadi Y, Loo YY, Nillian E, et al. Characterization of extended-spectrum ?-lactamases (ESBLs) producers in Klebsiella pneumoniae by genotypic and phenotypic methods. Int Food Res J. 2013;20(3):1479-1483.

Pallett A, Hand K. Complicated urinary tract infections: Practical solutions for the treatment of multiresistant Gram-negative bacteria. J Antimicrob Chemother. 2010;65(suppl_3)

Iqbal T, Naqvi R, Akhter SF. Frequency of urinary tract infection in renal transplant recipients and effect on graft function. J Pak Med Assoc. 2010;60(10):826.

Can F, Azap OK, Seref C, Ispir P, Arslan H, Ergonul O. Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis. 2015;60(4):523-527. doi:10.1093/cid/ciu864.

Hertz FB, Nielsen JB, Schønning K, Littauer P, Knudsen JD, Løbner-Olesen A, Frimodt-Møller N. Erratum to: Population structure of drug-susceptible, -resistant and ESBL-producing Escherichia coli from community-acquired urinary tract infections. BMC Microbiol. 2016;16(1):114. doi:10.1186/s12866-016-0725-4.

Shehabi AA, Mahafzah AM, Al-Khalili KZ. Antimicrobial resistance and plasmid profiles of urinary Escherichia coli isolates from Jordanian patients. East Mediterr Health J. 2004;10(3):322-328.

Kahlmeter G, Poulsen HO. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: The ECO.SENS study revisited. Int J Antimicrob Agents. 2012;39(1):45-51. doi:10.1016/j.ijantimicag.2011.09.013.

Saeed A, Khatoon H, Ansari FA. Multidrug resistant gram-negative bacteria in clinical isolates from Karachi. Pak J Pharm Sci. 2009;22(1):44-48.

Al-Mardeni RI, Batarseh A, Omaish L, Shraideh M, Batarseh B, Unis N. Empirical treatment for pediatric urinary tract infection and resistance patterns of uropathogens, in Queen Alia Hospital and Prince A'Isha Military Center Jordan. Saudi J Kidney Dis Transpl. 2009;20(1):135-139.

Mathai E, Chandy S, Thomas K, Antoniswamy B, Joseph I, Mathai M, Sorensen TL, Holloway K. Antimicrobial resistance surveillance among commensal Escherichia coli in rural and urban areas in Southern India. Trop Med Int Health. 2008;13(1):41-45.

Al-Tawfiq JA. Increasing antibiotic resistance among isolates of Escherichia coli recovered from inpatients and outpatients in a Saudi Arabian hospital. Infect Control Hosp Epidemiol. 2006;27(7):748-753.

Nwafia IN, Ohanu ME, Ebede SO, Ozumba UC. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing Escherichia coli in a tertiary hospital in Enugu, Nigeria. Ann Clin Microbiol Antimicrob. 2019;18(1):1-7. doi:10.1186/s12941-019-0305-5.

Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12).doi:10.15252/embr.202051034.

Kot B. Antibiotic resistance among uropathogenic Escherichia coli. Pol J Microbiol. 2019;68(4):403. doi:10.21307/pjm-2019-041.

Ferdosi-Shahandashti E, Javanian M, Moradian-Kouchaksaraei M, Yeganeh B, Bijani A, Motevaseli E, et al. Resistance patterns of Escherichia coli causing urinary tract infection. Caspian J Intern Med. 2015;6(3):148.

Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother. 2003;47(10):3222-3232.

Breines DM, Ouabdesselam S, Ng EY, Tankovic J, Shah S, Soussy CJ, et al. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV. Antimicrob Agents Chemother. 1997;41(1):175-179.

Heisig P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother. 1996;40(4):879-885.

Dehbanipour R, Khanahmad H, Sedighi M, Bialvaei AZ, Faghri J. High prevalence of fluoroquinolone-resistant Escherichia coli strains isolated from urine clinical samples. J Prev Med Hyg. 2019;60(1) doi:10.15167/2421-4248/jpmh2019.60.1.884.

Oloruntoba FP, Adabara NU, Adedeji SA, Kuta FA, Ezeonu CM. Prevalence of multidrug resistance genes in Escherichia coli isolates from patients attending four hospitals in Minna, Nigeria. Sri Lankan J Infect Dis. 2020;10(1):53-64.

Downloads

Published

31.07.2024

How to Cite

El-Mongy, M. A. ., El-khaliq, M. K. A. ., & Othman, A. S. . (2024). Molecular Studies on Quinolone Resistant MDR E. coli Detected in Urine Specimens. Journal of Biochemistry, Microbiology and Biotechnology, 12(1), 62–67. https://doi.org/10.54987/jobimb.v12i1.963

Issue

Section

Articles