Prevalence of Methicillin-Resistant Staphylococcus aureus (MRSA) And Extended-Spectrum B-Lactamases (ESBLs) Producing Enterobacteriaceae Among Nosocomial Bacteria in Kaduna, Nigeria

Authors

  • Zainab Muhammad Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Peace Doh Joshua Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Ben A. Chindo Department of Pharmacology, Faculty of Pharmacy, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Firdausi Aliyu Department of Biotechnology, Faculty of Science, Nigerian Defence Academy, Kaduna PMB 2109, Nigeria.
  • Hafsat Ummi Sule Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Bashir Sajo Mienda Department of Biotechnology, Faculty of Science, Nigerian Defence Academy, Kaduna PMB 2109, Nigeria.
  • Aminu Hamza Aminu Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Idris Abdulrahman Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.
  • Aliyu Adamu Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, Kaduna PMB 2339, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v12i1.961

Keywords:

Methicillin-resistant Staphylococcus aureus (MRSA), Extended-spectrum B-lactamases (ESBLs), Enterobacteriaceae, Nosocomial bacteria, Kaduna

Abstract

Despite continuous control efforts, antimicrobial resistance remains a global public health problem that undermines the treatment of infectious diseases. Methicillin-resistant Staphylococcus aureus (MRSA) and Extended-spectrum -lactamases (ESBLs) producing bacteria represent two important groups of multi-drug resistant pathogens that are associated with a high rate of treatment failure, prolonged morbidity, and increased cost of treatment. Therefore, keeping such superbugs under surveillance, particularly in healthcare facilities, is required for informed action, designing of control interventions for further antimicrobial emergence, and determining strategies for infection control. Thus, this study was designed to determine the prevalence of MRSA and ESBLs production Enterobacteriaceae isolated from four hospitals. Using CLSI guidelines, a total of 96 S. aureus were screened for methicillin resistance, and 137 isolates of Enterobacteriaceae for ESBLs production. The study observed a prevalence rate of 35.42 % for MRSA and 26.3 % for ESBLs production among Enterobacteriaceae. Furthermore, species-wise analysis of the data indicated the individual prevalence rate of ESBLs production among E. coli, K. pneumoniae, and P. aeruginosa to be 25.6 %, 28.8 % and 23.0, respectively. This indicates the occurrence of antimicrobial resistance strains among bacteria isolated from hospital settings. The results obtained here could be important in informing public health policies/strategies for the control of antimicrobial resistance and infection.

References

Halwani M, Solaymani-Dodaran M, Grundmann H, Coupland C, Slack R. Cross-transmission of nosocomial pathogens in an adult intensive care unit: incidence and risk factors. J Hosp Infect. 2006;63(1):39-46.

Graf FE, Palm M, Warringer J, Farewell A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Dev Res. 2019 Feb;80(1):19-23.

Ahmed MI. Prevalence of nosocomial wound infection among postoperative patients and antibiotics patterns at teaching hospital in Sudan. North Am J Med Sci. 2012;4(1):29-34.

Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr. VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-61.

Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the Action of Penicillin. Exp Biol Med. 1942;51(3):386-9.

Jessen O, Rosendal K, Bulow P, Faber V, Eriksen KR. Changing staphylococci and staphylococcal infections. A ten-year study of bacteria and cases of bacteremia. N Engl J Med. 1969;281(12):627-35.

Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40(1):135-6.

Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis. 2008;46(5):668-74.

Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med. 2013;173(21):1970-8.

Paterson DL, Bonomo RA. Extended-Spectrum Beta-Lactamases?: a Clinical Update. Clin Microbiol Rev. 2005;18(4):657-86.

Rawat D, Nair D. Extended-spectrum ? -lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2(3):263-74.

Jacoby GA, Medeiros AA. More Extended-Spectrum Beta-Lactamases. Antimicrob Agents Chemother. 1991;35(9):1697-704.

Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, et al. Prevalence of extended-spectrum ?-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol. 2020;46(1):1-14.

Bradford PA, Petersen PJ, Fingerman IM, White DG. Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. J Antimicrob Chemother. 1999;44(5):607-10.

Baba J, Inabo HI, Umoh VJ, Olayinka AT. Antibiotic resistance patterns of methicillin resistant Staphylococcus aureus (MRSA) isolated from chronic skin ulcer of patients in Kaduna state, Nigeria. IOSR J Pharm. 2015;5(2):7-12.

Garba S, Olayinka BO. Prevalence of methicillin resistance among clinical isolates of Staphylococcus aureus in Zaria Metropolis, Kaduna. BIMA J Sci Technol 2536-6041. 2018;2(01):95-104.

Maidawa GZ, Orukotan AA, Abdulfatai K. Occurrence of methicillin resistant Staphylococcus aureus isolated from patients attending some hospitals within Kaduna metropolis. Sci World J. 2021;16(3):319-24.

Adamu A, Idris H, Aliyu F, Sule HU, Umar FJ, Aminu AH. Azadirachta indica as a Alternative Treatment Source for Methicillin-Resistant Staphylococcus Aureus Infections. BIMA J Sci Technol 2536-6041. 2024;8(1B):106-12.

Parte A, Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, et al. Bergey's manual of systematic bacteriology: volume 5: the Actinobacteria. Springer Science & Business Media; 2012.

Wayne PA. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI Doc M100-S20. 2010;

Ahmed OI, El-Hady SA, Ahmed TM, Ahmed IZ. Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egypt J Med Hum Genet. 2013;14(3):277-83.

Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care Lond Engl. 2017 Aug;21(1):211.

Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2010 Oct;15(41):19688.

Wang FD, Chen YY, Chen TL, Liu CY. Risk factors and mortality in patients with nosocomial Staphylococcus aureus bacteremia. Am J Infect Control. 2008 Mar 1;36(2):118-22.

Abubakar U, Sulaiman SAS. Prevalence, trend and antimicrobial susceptibility of Methicillin Resistant Staphylococcus aureus in Nigeria: a systematic review. J Infect Public Health. 2018;11(6):763-70.

Harbarth S, Samore MH. Antimicrobial resistance determinants and future control. Emerg Infect Dis. 2005 Jun;11(6):794-801.

Foucault C, Brouqui P. How to fight antimicrobial resistance. FEMS Immunol Med Microbiol. 2007 Mar 1;49(2):173-83.

Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99-106.

Amann S, Neef K, Kohl S. Antimicrobial resistance (AMR). Eur J Hosp Pharm Sci Pract. 2019/05/07 ed. 2019 May;26(3):175-7.

Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, et al. Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control. 2015;4(1):49.

Saravanan M, Ramachandran B, Barabadi H. The prevalence and drug resistance pattern of extended spectrum ?-lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathog. 2018;114:180-92.

Mbah MI, Anyamene CO. The occurrence of ESBL Producing Escherichia coli and Klebsiella species in Selected Broiler Farms in Jalingo, Taraba State Nigeria. ATBU J Sci Technol Educ Vol 9 No 1 2021. 2021;

Yusha'u M, Umar MI, Suleiman K. Indigenous commercial drinks as potential sources of extended spectrum ?-lactamases (ESBLS) producing organisms in Kano, Nigeria. Int J Biomed Health Sci. 2010;6(2).

Amare A, Eshetie S, Kasew D, Moges F. High prevalence of fecal carriage of Extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae among food handlers at the University of Gondar, Northwest Ethiopia. PLOS ONE. 2022 Mar 17;17(3):e0264818.

Downloads

Published

31.07.2024

How to Cite

Muhammad, Z. ., Joshua, P. D. ., Chindo, B. A. ., Aliyu, F. ., Sule, H. U., Mienda, B. S. ., Aminu, A. H. ., Abdulrahman, I. ., & Adamu, A. (2024). Prevalence of Methicillin-Resistant Staphylococcus aureus (MRSA) And Extended-Spectrum B-Lactamases (ESBLs) Producing Enterobacteriaceae Among Nosocomial Bacteria in Kaduna, Nigeria. Journal of Biochemistry, Microbiology and Biotechnology, 12(1), 54–58. https://doi.org/10.54987/jobimb.v12i1.961

Issue

Section

Articles