Biofloc Technology as a Sustainable Alternative for Managing Aquaculture Wastewater

Authors

  • Abdul-Malik Abdul-Qadir Department of Biochemistry, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Minna Road, Lapai 911101, Niger, Nigeria.
  • Mohammed Aliyu-Paiko Department of Biochemistry, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Minna Road, Lapai 911101, Niger, Nigeria.
  • Adamu Kabir Mohammed Department of Biological Sciences, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Minna Road, Lapai 911101, Niger, Nigeria.
  • Mohammed Jibrin Ndejiko Department of Microbiology, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University, Minna Road, Lapai 911101, Niger, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v12i1.960

Keywords:

Aquaculture Waste Management, Bio-floc Technology (BFT), Sustainable Fish Farming, Nutrient Recycling in Aquaculture, Aquaculture Biosecurity

Abstract

The rapid expansion of the aquaculture industry has resulted in a significant increase in wastes generated from fish farming systems, including undigested feed, recycled nitrogen, and other resources. Consequently, the rise in fish production has slowed, as aqua-preneurs are unable to achieve maximum output and profitability. Bio-floc technology (BFT) is a cutting-edge system with enormous potential for application in fish farming. BFT works on the premise of converting the solid waste generated from spilt or undigested feed by the fish or from feces in the form of solid and dissolved waste mainly carbon, nitrogen ammonium, and phosphorus to probiotic or nutritious protein for fish consumption. Using the technology, bacteria may convert bio-waste into edible nutrients for farm animals. Adoption of BFT can offer biosecurity measures that can limit the use of antibiotics and chemicals that have been outlawed by WHO/EU owing to rising environmental issues associated with their application. This study examines and presents BFT as a sustainable alternative for managing aquaculture wastewater and in-house provision of nutrients for cultured animals. The coverage of this study includes an overview of Aquaculture wastewater treatment, aquaculture wastewater as media for Biofloc formation, pathogens, probiotics, and potential for biofloc formation in aquaculture systems and BFT as a sustainable means of nutrition in aquaculture. The cost-effectiveness and potential of BFT in treating aquaculture wastewater are also critically discussed. The present study highlights the importance of harnessing BFT for cost-effective aquaculture production and alternative means of managing aquaculture wastewater.

References

Abdul-Qadir AM, Aliyu-Paiko M, Adamu KM, Aliyu-Abdullahi A. Inclusion of Sargassum muticum and Parkia biglobosa in diets for African Catfish (Clarias gariepinus) elevates feed utilization, growth and immune parameters. Afr J Agric Res. 2020;15(1):134-9. doi: 10.5897/AJAR2019.14189.

Dauda AB, Romano N, Ebrahimi M, Teh JC, Ajadi A, Chong CM, et al. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture. 2018;483:120-30.

Mahari WA, Waiho K, Fazhan H, Azwar E, Shu-Chien AC, Hersi MA, et al. Emerging paradigms in sustainable shellfish aquaculture: Microalgae and biofloc technologies for wastewater treatment. Aquaculture. 2024. doi: 10.1016/j.aquaculture.2024.740835.

Dauda AB, Ajadi A, Tola-Fanbunmi AS, Akinwole AO. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquac Fish. 2019;4:81-8.

Roveda M, de Menezes CC, Bolívar-Ramírez NC, Owatari MS, Jatobá A. Acidifying remediation and microbial bioremediation decrease ammoniacal nitrogen, orthophosphates, and total suspended solids levels in intensive Nile tilapia farming under biofloc conditions. Aquaculture. 2024. doi: 10.1016/j.aquaculture.2023.740292.

Mohammed JN, Dagang WRZW. Development of a new culture medium for bioflocculant production using chicken viscera. MethodsX, 2019;6, 1467-1472..

Turan G, Chagas AC, Costa CS, Wasielesky Jr WF, da Silva Poersch LH. Impact of the co-cultivation of macroalgae (Ulva lactuca f. fasciata) on the composition of biofloc in a zero water exchange system used for rearing Pacific white shrimp (Litopenaeus vannamei)(Decapoda, Dendrobranchiata). Crustaceana. 2024;97(1-2):125-36.

Zhifei L, Ermeng Y, Kai Z, Wangbao G, Yun X, Jingjing T, et al. Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system. Front Microbiol. 2020. doi: 10.3389/fmicb.2020.00930.

Ndejiko JM, Wan-Dagang WRZ. Culture optimization for production and characterization of bioflocculant by Aspergillus flavus grown on chicken viscera hydrolysate. World J Microbiol Biotechnol. 2019;35(8):1-19.

Mohammed JN, Wan-Dagang WRZ. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. Water Sci Technol. 2019;80(10):1807-22.

Verdegem MCJ. Nutrient discharge from aquaculture operations in function of system design and production environment. Rev Aquac. 2013;4:1-14.

Asche F, Roll KH, Tveteras S. Future trends in aquaculture: productivity growth and increased production. In: Holmer M, Black K, Duarte CM, Marba N, Karakssis I, editors. Aquaculture in the Ecosystem. Netherlands: Springer Science and Business Media B.V.; 2008. p. 271-92.

Lazzari R, Baldisserotto B. Nitrogen and phosphorus waste in fish farming. Bol Inst Pesca. 2008;34(4):591-600.

Silva VF, Pereira PK, Martins MA, Lorenzo MA, Cella H, Lopes RG, et al. Effects of microalgae addition and fish feed supplementation in the integrated rearing of Pacific white shrimp and Nile tilapia using biofloc technology. Animals (Basel). 2022;12(12):1527.

Yeo SE, Binkowski FP, Morris JE. Aquaculture effluents and waste by-products: Characteristics, potential recovery, and beneficial reuse. NCRAC, USA; 2004.

Beveridge MCM, Phillips MJ, Clarke RM. A quantitative and qualitative assessment of wastes from aquatic animal production. In: Brune DE, Tomasso JR, editors. World Aquaculture Society; 1991. p. 506-33.

Bermudes M, Glencross B, Austen K, Hawkins W. The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture. 2010;306:160-6.

Akinbile CO, Yusoff MS. Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediation. 2012;14(3):201-11.

Montanhini NR, Ostrensky A. Nutrient load estimation in the waste of Nile tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquac Res. 2015;46(6):1309-22.

Siddiqui AB, Al-Harbi AH. Nutrients budgets in tanks with different stocking densities of hybrid tilapia. Aquaculture. 1999;245-52.

Huang XF, Ye GY, Yi NK, Lu LJ, Zhang L, Yang LY, et al. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecol Eng. 2019;135:45-53.

Ahmad AL, Chin JY, Harun MHZM, Low SC. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J Water Process Eng. 2022;46. doi: 10.1016/j.jwpe.2021.102553.

Tom AP, Jayakumar JS, Biju M, Somarajan J, Ibrahim MA. Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus. 2021;4. doi: 10.1016/j.nexus2021.100022.

Milko AJ, Gustavo V, Mitsuru E, Masahiko K, Carlos R. Disinfection of Seawater for Hatchery Aquaculture System Using Electrolytic Water Treatment. Aquaculture. 2002;23:213-4.

Ozigbo E, Anyadike C, Forolunsho G. Development of an automatic fish feeder. Afr J Root Tuber Crop. 2013;10(1):27-32.

Adewumi A, Olaleye V. Catfish culture in Nigeria: progress, prospects and problems. Afr J Agric Res. 2011;6(6):1281-5.

Babatunde A, Deborah RA, Gan M, Simon T. Aquaculture in Africa: A Comparative Review of Egypt, Nigeria, and Uganda Vis-À-Vis South Africa. Rev Fish Sci Aquac. 2020;29(2):167-97.

Anetekhai AM. Catfish aquaculture industry assessment in Nigeria. Afr J Biotechnol. 2010;9(1):73-6.

Chen S, Summerfelt S, Ljosordo T, Malone R. Recirculating systems, effluents and treatments. Aquac Environ US. 2002;6:119-40.

Fernanda SD, Danilo CP, Wagner CV. Phosphorous budget in integrated multitrophic aquaculture systems with Nile-tilapia (Oreochromis niloticus) and Amazon River prawn (Macrobrachium amazonicum). J World Aquac Soc. 2017;48(3):402-14.

Avnimelech Y, Kochba M. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using 15N tracing. Aquaculture. 2009;287:163-8.

Dauda AB. Biofloc technology: A review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Rev Aquac. 2020;12(2):1193-210.

Geng B, Li Y, Liu X, Ye J, Guo W. Effective Treatment of Aquaculture Wastewater with Mussels/Microalgae/Bacteria Complex System: A Pilot Study. Sci Rep. 2022;12(1):2263.

Saidu H, Mohammed Ndejiko J, Abdullahi N, Bello Mahmoud A, Eva Mohamad S. Microalgae: A cheap tool for wastewater abatement and biomass recovery. Environmental Technology Reviews. 2022;11(1):202-25..

WorldFish. Aquatic Foods for Healthy People and Planet. 2019. Available from: https://worldfishcenter.org/annual-report2019/.

Zhifei L, Ermeng Y, Kai Z, Wangbao G, Yun X, Jingjing T, et al. Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system. Front Microbiol. 2020. doi: 10.3389/fmicb.2020.00930.

Halwart M. Fish farming high on the global food system agenda in 2020. FAO Aquac Newsl. 2020;61:2-3.

Aliyu-A A, Aliyu-Paiko M, Abafi J, Abdul-Malik A, Adamu KM, King MA. Fermentation of feed ingredients as potential strategy to improve health status and reduce opportunistic pathogens in fish farming. Asian J Biotechnol Bioresour Technol. 2019;5(2):1-17.

Leticia FC, Juan FG, Samuel LT, Jesús JLR, Genaro MSZ. Effect of three productive stages of tilapia (Oreochromis niloticus) under hyper-intensive recirculation aquaculture system on the growth of tomato (Solanum lycopersicum). Lat Am J Aquat Res. 2021;49(5):689-701. doi: 10.3856/vol49-issue5-fulltext-2620.

Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol. 2016;210(3):81-7. doi: 10.1016/j.biortech.2015.12.079.

Camacho-Chab JC, Lango-Reynoso F, Castañeda-Chávez MR, Galaviz-Villa I, Hinojosa-Garro D, Ortega-Morales BO. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. Water. 2016;8(369). doi: 10.3390/w8090369.

Abd El-rhman AM, Khattab YAE, Shalaby AME. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2009;27:175-80.

Yousefian M, Amiri MS. A review of the use of prebiotic in aquaculture for fish and shrimp. Afr J Biotechnol. 2009;8:7313-8.

Rombout JH, Abelli L, Picchietti S, Scapigliati G, Kiron V. Teleost intestinal immunology. Fish Shellfish Immunol. 2010;31:616-26.

Panigrahi A, Azad IS. Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish Physiol Biochem. 2007;33:429-40.

Dalmo RA, Bøgwald J. ß-glucans as conductors of immune symphonies. Fish Shellfish Immunol. 2008;25:384-96.

Bagheri TS, Hedayati V, Yavari M, Alizade, Farzanfar A. Growth, survival and gut microbial load of rainbow trout (Oncorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk J Fish Aquat Sci. 2008;8:43-8.

Hamilton-Miller JMT. The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int J Antimicrob Agents. 2003;22(4):360-6. doi: 10.1016/s0924-8579(03)00153-5.

Emerenciano MGC, Martinez-Corodova LR, Martinez-Porchas M, Miranda-Baeza A. Biofloc Technology (BFT): A Tool for Water Quality Management in aquaculture. Water Qual. 2017;5:92-109.

Abdul-Malik A, Aliyu-Paiko M, Adamu KM, Aliyu-A A, Mohammed JN. Role of prebiotic, probiotic and symbiotic diets on bacterial proliferation in feed and intestine of African (Clarias gariepinus) catfish. Journal of Applied Sciences and Environmental Management. 2023;27(1):87-93..

Ahmad I, Verma AK, Rani AMB, Rathore G, Saharan N, Gora AH. Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Rev Aquac. 2016;457:61-7.

Taoka Y, Maeda H, Jo JY, Jeon MJ, Bai SC, Lee WJ, et al. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in closed recirculating system. Fish Sci. 2006;72(2):310-21.

Robertson PAW, O'Dowd C, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture. 2000;185(3-4):235-43.

Gómez RG, Balcázar JL, Shen MA. Probiotics as Control Agents in Aquaculture. J Ocean Univ China. 2007;6(1):76-9.

Avnimelech Y. Bio-filters: the need for a new comprehensive approach. Aquac Eng. 2006;34:172-8.

Irshad A, Babitha-Rani AM, Verma AK, Mudasir M. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquac Int. 2017;25:1215-26.

Xu WJ, Morris TC, Samocha TM. Effects of C/N ratio on biofloc development, water quality and performance of Litopenaeus vannamei juveniles in biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 2016;453:169-75.

Avnimelech Y. Biofloc Technology- A Practical Guidebook, 2nd Ed. Baton Rouge, Louisiana: World Aquaculture Society; 2012. p. 102.

De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture. 2008;277(3-4):125-37.

Avnimelech Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 2007;264:140-7.

Nor AK, Nurarina AG, Mhd I, Zaharah I. Isolation of Potential Bacteria as Inoculum for Biofloc Formation in Pacific Whiteleg Shrimp Culture Ponds. Pak J Biol Sci. 2017;20:306-13. doi: 10.3923/pjbs.2017.306.313.

Becerril-Cortés D, Monroy-Dosta MDC, Emerenciano MGC, Castro-Mejía G, Sofia B, Bermúdez S, et al. Effect on nutritional composition of produced bioflocs with different carbon sources (Molasses, coffee waste and rice bran) in Biofloc system. Int J Fish Aquat Stud. 2018;6(2):541-7.

Khanjani MH, Sharifinia M. Biofloc technology as a promising tool to improve aquaculture production. Rev Aquac. 2020;12(3):1836-50.

Ju ZY, Forster I, Conquest L, Dominy W. Enhanced growth effects on shrimp, Litopenaeus vannamei from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac Nutr. 2008;14:533-43.

Nageswari P, Verma A, Gupta S, Jeyakumari A. Finger millet as a carbon source for biofloc, improved growth performance of Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings. Indian J Fish. 2020;67(4):56-67.

Crab R, Lambert A, Defoirdt T, Bossier P, Verstraete W. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J Appl Microbiol. 2010;109:1643-9.

Zafar MA, Talha MA, Rana MM. Effect of biofloc technology on growth performance, digestive enzyme activity, proximate composition, and hematological parameters of Asian stinging catfish (Heteropneustes fossilis). J Appl Aquac. 2021;34(3):755-73.

Romano N, Dauda AB, Ikhsan N, Karim M, Kamarudin MS. Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac Res. 2018;49(12):3691-701.

Mansour AT, Esteban MA. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017;64:202-9.

Panigrahi A, Sundaram M, Saranya C, Swain S, Dash R, Dayal JS. Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol. 2019;86:1207-16.

Ogello EO, Outa NO, Obiero KO, NKyule D, Munguti JM. The prospect of biofloc technology (BFT) for sustainable aquaculture development. Sci Afr. 2021. doi: 10.1016/sciaf.2021.e01053.

Kim SK, Jang IK, Seo HY, Cho YR, Samocha T. Effects of biofloc on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei post larvae. Aquac Res. 2014;362-71.

Jansson C, Northen T. Calcifying cyanobacteria- the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol. 2010;21:365-71.

Ogello EO, Wullur S, Sakakura Y, Hagiwara A. Composting fish wastes as low-cost and stable diet for culturing Brachionus rotundiformis Tschugunoff (Rotifera): influence on water quality and microbiota. Aquaculture. 2018;232-9.

Bossier P, Ekasari J. Biofloc technology application in aquaculture to support sustainable development goals. Microb Biotechnol. 2017;10(5):1012-6

Downloads

Published

31.07.2024

How to Cite

Abdul-Qadir, A.-M. ., Aliyu-Paiko, M. ., Mohammed, A. K. ., & Ndejiko, M. J. . (2024). Biofloc Technology as a Sustainable Alternative for Managing Aquaculture Wastewater . Journal of Biochemistry, Microbiology and Biotechnology, 12(1), 44–53. https://doi.org/10.54987/jobimb.v12i1.960

Issue

Section

Articles