Seasonal Patterns and Genetic Variability of Aedes Mosquitoes in Some Selected Communities of Maiduguri Metropolitan Council, Borno State, Nigeria
DOI:
https://doi.org/10.54987/jobimb.v11i1.808Abstract
Aedes aegypti and Aedes albopictus mosquitoes spread dengue and yellow fever in Africa and worldwide. Rural-urban drift creates Aedes mosquito breeding sites through uncontrolled urbanization, inadequate urban infrastructure, lack of basic public health delivery, indiscriminate waste disposal, varying socioeconomic activities, and climatic changes. The above have happened in Maiduguri Metropolis since Boko Haram insurgencies began. This study will examine Aedes aegypti's seasonal distribution, abundance, composition, and genetic variability in selected Maiduguri Metropolitan Council and Jere Local Government Council communities. From October 2016 to May 2017, CDC traps and vacuum aspirators collected adult mosquitoes from study sites and stored at – 80 C. These were identified morphologically with taxonomy keys and stereomicroscopes, then molecularly with markers. Aedes mosquito population structure and genetic variability were determined using statistical software and molecular methods on samples. Hot-dry season has the highest relative abundance of this mosquito species in these study sites, while cold-dry season has the lowest. The molecular identification found Aedes aegypti in nine of twelve study locations but not Aedes albopictus. Some mosquitoes from the study locations had mutations due to carrying dengue virus or host population genes, but those without mutations showed a good phylogenetic relationship with Aedes aegypti mosquitoes from other countries, suggesting no genetic variability. The relative abundance of Aedes mosquitoes in Maiduguri Metropolitan Council increases the risk of dengue, zika, yellow fever, and chikungunya virus infections, and this mosquito species' seasonal distributions vary within and across seasons, but no genetic variability was found in the mosquitoes from the different locations used in this study.
References
Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, and Powell J R. Worldwide patterns of genetic differentiation imply multiple 'domestications' of Aedes aegypti, a major vector of human diseases. Proc R Soc. 2011;278:2446-2454.
Pinheiro FP, and Corber SJ. Global situations of dengue and dengue hemorrhagic fever and its emergence in the Americas. WHO Stat Quest. 1997;50:161-169.
Fradin MS, and Day JF. Comparative efficacy of insect repellants against mosquito bite. N Engl J Med. 2002;347(1):13-18.
Gibbons RV, and Vaughn, DW. Dengue: An escalating problem. Biomed Med J. 2002;324:1563-1566.
World Health Organization (WHO). Dengue:Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva World Health Organization and the Special Programme for Research and Training in Tropical Diseases, 2009.
WHO. Dengue hemorrhagic fever, diagnosis, treatment and control. 2nd ed. World Health Organization Switzerland. 1997.
Fraga, EC, Santos JMM, Maia JF. Enzymatic variability in Aedes aegypti (Diptera:Culicidae) populations from Manaus-AM, Brazil. Genet Mol Biol. 2003;26:181-187.
Traore LM, Zeller H, Monlun E, Mondo M, Hervy JP, Adam F, Digoutte JP. Dengue 2 outbreak in Southeastern Senegal during 1990:virus isolations from mosquitoes (Diptera:Culicidae). J Med Entomol. 1994;31:623-627.
Marie V, Mousson L, Kakatoarivony I, Villeret R, Rodmain F, Duchemin JB, Failloux AB. Population genetic structure and competence as a vector for dengue type 2 virus of Aedes albopictus from Madagascar. Am J Trop Med Hyg. 2001;65(5):491-497.
Whitehorn J, and Farrar J. "Dengue". British Med Bull. 2010;95:161-173.
Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109:141-161.
Gubler DJ, and Clark GG. Dengue/dengue hemorrhagic fever:the emergence of a global health forum. Emerg Infect Dis J. 1995;1:55-57.
Gubler DJ. Dengue and Dengue Hemorrhagic Fever. Clin Microbiol Rev. 1998;11(3):480-496.
Guzman MG, and Kouri G. Dengue:an update. Lancet Infect Dis. 2002;2:33-42.
WHO. Mobilizing research to halt exponential growth of dengue. TDR News. 2007;77:8-11.
Muanya C. Mosquito-transmitted Zika virus may spread to Nigeria. Retrieved on 03 February, 2016.
Ayres CF, Romao TPA, Melo-Santos MAV, Furtado AF. Genetic diversity in Brazilian populations of Aedes albopictus. Mem Inst Oswaldo Cru. 2002;97:871-875.
Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas L, Munoz ML, Farlan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg. 2002;66:213-222.
Ravel S, Herve JP, Diarrassouba S, Kone A, Cuny G. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera:Culicidae) from Cote d' Ivoire:evidence for a micro geographic genetic differentiation of mosquitoes from Bouake. Acta Trop. 2002;82:39-49.
Beebe NW, Whelan PI, Hurk AVD, Ritchie SA, Cooper RD. Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring. Commun Dis Intell Q Rep. 2005;29:299-304.
Herrera F, Urdancta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martinez JA, Pernalete M, Villeges P, Montoya A, Rubiopais Y, Rojas E. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cru. 2006;101:625-633.
Bracco JE, Capurro ML, Lourenco-de-Oliveira R, Sallum MAM. Genetic variability of Aedes aegypti in the America using a mitochondrial gene:evidence of multiple introductions. Mem Inst Oswaldo Cru. 2007;2:573-580.
Tabachnick WJ. Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. Am Entomol.1991;37:14-24.
Ballinger-Crabtree ME, Black IV WC, Miller BR. Use of genetic polymorphisms detected by the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. Am J Trop Med and Hygiene. 1992;47:893-901.
Balloux F, and Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol. 2002;11:155-165.
Apostol BL, Black W C, Reiter P, Miler B. Population genetics with RAPD-PCR markers:the breeding structure of Aedes aegypti in Puerto Rico. Heredity.1996;76:325-334.
Huber K, Le Loan TH, Hoang TH, Ravel S, Rodhain F, and Failloux AB. Genetic differentiation of the dengue vector. Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol Notes. 2002;11:1629-1635.
Rinker CD, Pitts RJ, and Zwiebel LJ. Disease vectors in the era of next generation sequencing. Genome Biol. 2016;17:95.
Ayres CFJ, Melo-Santos MAV, Sole-Cava AM, Furcado AF. Genetic differentiation of Aedes aegypti (Diptera:Culicidae), the major dengue vector in Brazil. J Med Entomol. 2003;40:430-435.
Julio NB, Chiappero MB, Rossi HJ, Rondan Duenas JC, Gardenal CN. Genetic structure of Aedes aegypti in the city of Cordoba (Argentina), a recently reinfested area. Mem Inst Oswaldo Cru. 2009;104:626-631.
Scarpassa VM, Cardoza TB, and Cardoso Junior RP. Population genetics and phylogeography of Aedes aegypti (Diptera:Culicidae) from Brazil. Am J Trop Med Hygiene. 2008;78:895-903.
Baba MM, and Talle M. The Effect of Climate on Dengue Virus Infections in Nigeria. New York Sci J. 2011;4(1):28-33.
Idris AN, Baba MM, Thairu YI, and Bamidele O. Sero-prevalence of dengue type-3 Virus among patients with febrile illnesses attending a tertiary hospital in Maiduguri, Nigeria. Int J Med Med Sci. 2013;5 (12):560-563.
Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler D J, Hunsperger E, Kroeger A, Margolis H S, Martínez E, Nathan M B, Pelegrino J L, Simmons C, Yoksan S, Peeling R W. (2010). "Dengue:A continuing global threat". Nature Rev Microbiol. 2010;8 (12):57-116.
NPC. National Population Commission. Nigeria Census Report 2006. http://www.nigeriamasterweb.com/Nigeria06CensusFigs.html.
Molta NB, Watila IM, Out TI, Oguche SO, Daniel HI, and Gadzama NM. (1995). Malaria in Nigeria:an update on its chemotherapy with chloroquine, pyrimethamine/sulphadoxine and pyrimethamine/sulphalene and the need for alternative antimalarial drugs. Res J Sci. 1995;1(2):59-64.
Gimand Associates. Environmental and human resources development consultant. Environmental impact assessment of Nigerian Bottling Company PLC. Coca-cola Maiduguri Plant 'A' Wastewater discharge project: Draft report. 2002;1-81.
Bukbuk DN, Dowall SD, Lewandowski K, Bosworth A, Baba SS, Varghese A, Watson RJ, Bell A, Atkinson B, Hewson R. Serological and Virological Evidence of Crimean Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. PLoS Neglect Trop Dis. 2016;10 (12):5126.
Hopkin GHE. Mosquitoes of the Ethiopian Region. Larval Bionomics of Mosquitoes and Taxonomy of Culicine larvae. British Museum (National History). 1952;8:1-14.
Highton, R.B. Taxonomic keys for the identification of the Afrotropical mosquitoes. Highton April: Revised and prepared by RB. 1983;1-85.
Snell AE. Identification keys to larval and adult female mosquitoes (Diptera:Culicidae) of New Zealand, New Zealand J Zoology. 2005;32:2, 99-110.
Hebert PD, Cywinska A, Ball SL, and deWaard JR. Biological identifications through DNA barcodes. Proc. Biol. Sci.2003;270:313-321.
Kumar NP, Rajavel AR, Natarajan R, Jambulingam P. DNA barcodes can distinguish species of Indian mosquitoes (Diptera:Culicidae). J Med Entomol. 2007;44:1-7.
Rivero J, Urdaneta L, Zoghbi N, Pernalete M, Rubio-Palis Y, Herrera F. Optimization of extraction procedure for mosquito DNA suitable for PCR-based techniques. Int J Trop Insect Sci. 2004;24:266-269.
Coen ES, Strachan T, and Dover G. Dynamics of concerted evolution of ribosomal DNA and histonegene families in the melanogaster species subgroup of Drosophila. J Molecular Biology. 1982;15:17-35.
Begon M, Harper JL. and Townsend C R. Ecology:Individuals, Populations, and Communities, 3rd edition. Blackwell Science Ltd. Cambridge, MA. 1996.
Kumar S, Stecher G, and Tamura K. MEGA7:Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evolut. 2016;33:1870-187.
Felsentein J. PHYLIP, Phylogeny Inference Package. Version 3.5C. Seattle, WA, University of Washington. 1993.
Tamura, K. and Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evolut. 1993;10:512-526.
Amarasinghe A, Kuritsky JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349-1354.
WHO. Yellow fever. Rapid field entomological assessment during yellow fever outbreaks in Africa. Methodological field approaches for scientists with a basic background in entomology. Australia:Biotext Pty Ltd;2014.
Huang YJS, Higgs S, Horne KME, Vanlandingham DL. (2014). Flavivirus-mosquito interactions. Viruses. 2014;6:4703-4730.
Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux AB. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera:Culicidae) based on mitochondrial DNA variations. Genetic Resources.2005;86:1-11.
Coffinet T, Mourou JR, Pradines B, Toto JC, Jarjavai F, Amalvict R. First record of Aedes albopictus in Gabon. J Am Mosq Control Assoc. 2007;23:471-472.
Diallo M, Laganier R, Nangouma A. First record of Ae. albopictus (Skuse 1894), in Central African Republic. Trop Med Int Health. 2010;15:1185-1189.
Campos M, Spenassatto C, Macoris da Graca M, Paduan K, Pinto J, Ribolla P.. Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in Sao Paulo, Brazil. Ecology and Evolution. Blackwell Publishing Ltd. 2012;2 (11):2794-2802. doi:10.1002/ece3.392.
Akhtar R, and Ebi K L. Working group II:Climate change;Impacts, adaptation and vulnerability. Chapter 9. Human Health. 2001.
Centers for Disease Control and Prevention (CDC). Dengue and Climate http://www.cdc.gov/dengue/entamologyEcology/climate html#az. 2010;Retrieved 16 February, 2017.
Ramchurn SK, Goorah SS. Letter to the editor:ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal. Euro Surveill. 2013;10;18(2):20351.
Hopp, M.J. and J.A. Foley. World wised fluctuations in dengue fever cases related to climate variability. Climate Res.2003;25:85-94.
McMichael AJ, Haines A, Sloof R, and Kovats S. Climate change and human health, World Health Organization, Geneva. 1996.
Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue-El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand:a longitudinal data analysis. PLoS Med. 2009;6(11):e1000168.
Koopman JS, Prevots DR, Marin MA, Dantes HG, Aquino AML, Jr. Longini IM, and Amor JS. (1991). Determinants and predictors of dengue infection in Mexico. Am J Epidemiology. 1991;133:1168-1178.
Nicholls N. El Niño-Southern Oscillation and Vector-Borne Disease. Lancet. 1993;342:1284-1285.
Ram S, Khurana S, Kaushal V, Gupta R, and Khurana SB. Incidence of dengue fever in relation to climate factors in Ludhiana Punjab. Indian J Med Res. 1998;108:128-133.
Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, and McMichael AJ. Climate change and future populations at risk of malaria, Global Environmental Change. 1999;9:89-107.
Wilson K. Global warming and the spread of disease:the debate heats up. Trends in Ecology and Evolution. 2000;15:488.
Sutherst R. Global Change and Human Vulnerability to Vector-Borne Diseases, Clinical Microbiology Reviews. 2004;17:136-173.
Dibo MR, Chierotti AP, Ferrari MS, Mendonca AL, and Neto FC. Study of the relationship between Aedes (stegomyia) aegypti egg and adult densities, dengue fever and climate in Mirassol State of Sao Paulo Brazil. Mem Inst Oswaldo Cru. 2008;103:554-560.
Rueda LM, Patel KJ, Axtell, RC, Stinner RE. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). J Med Entomol.1990;27:892-898.
Focks DA, Haide DG, Daniels E, and Mount GA. Dynamic life Table model of Aedes aegypti (Diptera:Culicidae):analysis of the literature and model development. J Med Entomol.1993;30:1003-1017.
Promprou S, Jaroensutasinee M, and Jaroensutasinee K. Climatic factors affecting dengue haemorrhagic fever incidence in Southern Thailand. Dengue Bull.2005;29:41-48.
Favier C, Degallier N, Vilarinhos PTR, Carralho MSL, Yoshizawa MAC, and Knox MB. Effects of climate and different management strategies on Aedes aegypti breeding sites:a longitudinal survey in Brasilia (DF;Brazil).Trop Med Int Health. 2006;11:1104-1118.
Wu PC, Guo HR, Lung SC, Lin CY, and Su HJ. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 2007;103:50-57.
Depradine CA, and Lovell EH. Climatological variables and the incidence of Dengue fever in Barbados. Int J Environ Health Res. 2004;14:429-441.
Mofareh SAA. (2013). Dengue fever Outburst and its Relationship with Climatic Factors. World Appl Sci J. 2013;22 (4):506-515.
Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ. & Vorndam AV. Dengue and dengue haemorrhagic fever. Lancet.1998;352:971-977.
Paupy C, Chantha N, Reynes JM, Failloux AB. Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity. 2005;95:144-147.
World Health Organization (WHO) updates fact sheet on Dengue and Severe Dengue. http://www.who.int/mediacentre/factsheets/fs117/en/. Retrieved on 6th April 2017.
Black IV W C, Bennett K E, Gorrochótegui-Escalante N, Barillas-Mury C V, Fernández-Salas I, de Lourdes Muñoz M, Farfán-Alé JA, Olson K E, and Beaty BJ. Flavivirus susceptibility in Aedes aegypti. Arch Med Res. 2002;33:379-388.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Biochemistry, Microbiology and Biotechnology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
