Growth Inhibition Kinetics of Acetonitrile Biodegradation

Authors

  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v10i2.749

Keywords:

Acetonitrile-degrading, Antarctica, Growth, Kinetics, Teissier-Edward, Pseudomonas sp.

Abstract

As the most pristine and one of the biggest continents in the southern hemisphere, Antarctica has over the decade accumulated hydrocarbon pollution mainly due to human activities related to logistics and transportation in this area. Acetonitrile spills caused by the sinking of the cargo ships call for research into acetonitrile-degrading microorganisms in the form of bioremediation in order to be ready for disasters in the future. The efficiency of a previously isolated acetonitrile-degrading sludge consortium as a bioremediation technique has been demonstrated. However, as the acetonitrile concentration rises, its growth was severely restrained. Acetonitrile's inhibitory effect on this consortium's development rate is modeled in this work using the Luong, Aiba, Haldane, Hans-Levenspiel, Yano, Teissier and Monod models. Statistical evaluations indicated that the most suitable kinetic model to fit the growth rate on acetonitrile was the Teissier-Edwards’s model. The computed values for the Teissier constants like maximal reduction rate (max), half saturation constant for maximal degradation (Ks) and half inhibition constant (Ki) were 0.934 1/H (95% confidence interval 0.301 to 1.567), 1.504 g/L (95% confidence interval 0.877 to 2.131), and 4.574 g/L (95% confidence interval 2.764 to 6.383), respectively. The parameters obtained from this study will be beneficial in acetonitrile biodegradation works.

References

Ahmed AE, Farooqui MYH. Comparative toxicities of aliphatic nitriles. Toxicol Lett. 1982;12(2-3):157-63.

Johannsen FR, Levinskas GJ, Berteau PE, Rodwell DE. Evaluation of the teratogenic potential of three aliphatic nitriles in the rat. Toxicol Sci. 1986;7(1):33-40.

Nawaz MS, Chapatwala KD, Wolfram JH. Degradation of acetonitrile by Pseudomonas putida. Appl Environ Microbiol. 1989;55(9):2267-74.

Banerjee A, Sharma R, Banerjee UC. The nitrile-degrading enzymes: Current status and future prospects. Appl Microbiol Biotechnol. 2002;60(1-2):33-44.

Kao CM, Chen KF, Liu JK, Chou SM, Chen SC. Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol. 2006;71(2):228-33.

James D Idol, Jr.: Setting the world of nitrile chemistry afire. Chem Eng News. 1971;49(27):16-8.

Adjei MD, Ohta Y. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World J Microbiol Biotechnol. 1999;15(6):699-704.

Nagle NJ, Rivard CJ, Mohagheghi A, Philippidis G. Bioconversion of cyanide and acetonitrile by a municipal-sewage-derived anaerobic consortium. Bioremediation Inorg. 1995;71-9.

Nawaz MS, Davis JW, Wolfram JH, Chapatwala KD. Degradation of Organic Cyanides by Pseudomonas aeruginosa. Appl Biochem Biotechnol. 1991;28-29(1):865-75.

Haåkansson K, Welander U, Mattiasson B. Degradation of acetonitrile through a sequence of microbial reactors. Water Res. 2005;39(4):648-54.

DiGeronimo MJ, Antoine AD. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21. Appl Environ Microbiol. 1976;31(6):900-6.

Endo T, Watanabe I. Nitrile hydratase of Rhodococcus sp. N-774 Purification and amino acid sequences. FEBS Lett. 1989;243(1):61-4.

Yamamoto K, Ueno Y, Otsubo K, Yamane H, Komatsu K -i., Tani Y. Efficient conversion of dinitrile to mononitrile-monocarboxylic acid by Corynebacterium sp. C5 cells during tranexamic acid synthesis. J Ferment Bioeng. 1992;73(2):125-9.

Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K. Asymmetric hydrolysis of ?-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol. 1992;37(2):184-90.

Babu GRV, Wolfram JH, Marian JM, Chapatwala KD. Pseudomonas marginalis: its degradative capability on organic nitriles and amides. Appl Microbiol Biotechnol. 1995;43(4):739-45.

Langdahl BR, Bisp P, Ingvorsen K. Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology. 1996;142(1):145-54.

Acharya A, Desai AJ. Studies on utilization of acetonitrile by Rhodococcus erythropolis A10. World J Microbiol Biotechnol. 1997;13(2):175-8.

Rezende RP, Dias JCT, Ferraz V, Linardi VR. Metabolism of benzonitrile by Cryptococcus sp. UFMG-Y28. J Basic Microbiol. 2000;40(5-6):389-92.

Alfani F, Cantarella M, Spera A, Viparelli P. Operational stability of Brevibacterium imperialis CBS 489-74 nitrile hydratase. J Mol Catal - B Enzym. 2001;11(4-6):687-97.

Dias JCT, Rezende RP, Linardi VR. Bioconversion of nitriles by Candida guilliermondii CCT 7207 cells immobilized in barium alginate. Appl Microbiol Biotechnol. 2001;56(5-6):757-61.

Wang C-C, Lee C-M, Chen L-J. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria. J Environ Sci Health - Part ToxicHazardous Subst Environ Eng. 2004;39(7):1767-79.

Lee CM, Wang CC. Denitrification with E-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system. Water Sci Technol. 2004;49(5-6):341-8.

Prasad S, Sharma DR, Bhalla TC. Nitrile- and amide-hydrolysing activity in Kluyveromyces thermotolerans MGBY 37. World J Microbiol Biotechnol. 2005;21(8-9):1447-50.

Kiviharju K, Salonen K, Leisola M, Eerikäinen T. Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ?-rhodomycinone production with kinetic equations and neural networks. J Biotechnol. 2006;126(3):365-73.

Shokrollahzadeh S, Bonakdarpour B, Vahabzadeh F, Sanati M. Growth kinetics and Pho84 phosphate transporter activity of Saccharomyces cerevisiae under phosphate-limited conditions. J Ind Microbiol Biotechnol. 2007;34(1):17-25.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Saravanan P, Pakshirajan K, Saha P. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J Hazard Mater. 2009;162(1):476-81.

Hamitouche A-E, Bendjama Z, Amrane A, Kaouah F, Hamane D. Relevance of the Luong model to describe the biodegradation of phenol by mixed culture in a batch reactor. Ann Microbiol. 2012;62(2):581-6.

Nickzad A, Mogharei A, Monazzami A, Jamshidian H, Vahabzadeh F. Biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor. Water Environ Res. 2012;84(8):626-34.

Monod J. The Growth of Bacterial Cultures. Annu Rev Microbiol. 1949;3(1):371-94.

Boon B, Laudelout H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem J. 1962;85:440-7.

Teissier G. Growth of bacterial populations and the available substrate concentration. Rev Sci Instrum. 1942;3208:209-14.

Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng. 1968 Nov 1;10(6):845-64.

Yano T, Koga S. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol Bioeng. 1969 Mar 1;11(2):139-53.

Han K, Levenspiel O. Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng. 1988;32(4):430-7.

Luong JHT. Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng. 1987;29(2):242-8.

Moser A. Kinetics of batch fermentations. In: Rehm HJ, Reed G, editors. Biotechnology. VCH Verlagsgesellschaft mbH, Weinheim; 1985. p. 243-83.

Webb JLeyden. Enzyme and metabolic inhibitors [Internet]. New York: Academic Press; 1963. 984 p. Available from: https://www.biodiversitylibrary.org/bibliography/7320

Hinshelwood CN. The chemical kinetics of the bacterial cell. Clarendon Press, Gloucestershire, UK; 1946.

Rohatgi A. WebPlotDigitizer-Extract Data from Plots, Images, and Maps [Internet]. 2018 [cited 2019 Jan 1]. Available from: http://arohatgi. info/WebPlotDigitizer

Bennett K, Chen Y. A two-level Plackett-Burman non-geometric experimental design for main and two factor interaction sensitivity analysis of zigzag-channel PCHEs. Therm Sci Eng Prog. 2019 Jun 1;11:167-94.

Blanco-Canqui H, Ruis SJ, Holman JD, Creech CF, Obour AK. Can cover crops improve soil ecosystem services in water-limited environments? A review. Soil Sci Soc Am J. 2022;86(1):1-18.

Costa LL, Arueira VF, Ocaña FA, Soares-Gomes A, Zalmon IR. Are ghost crabs (Ocypode spp.) smaller on human-disturbed sandy beaches? A global analysis. Hydrobiologia. 2022 Sep 1;849(15):3287-98.

He M, Jiang N, Yin X, Xu A, Mu K. Conventional and drug-eluting beads transarterial chemoembolization in patients with unresectable intrahepatic cholangiocarcinoma: a systematic review and pooled analysis. J Cancer Res Clin Oncol [Internet]. 2022 Nov 19 [cited 2022 Dec 14]; Available from: https://doi.org/10.1007/s00432-022-04485-1

Li T, Liu J, Bai R, Ohandja D-G, Wong F-S. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res. 2007 Aug;41(15):3465-73.

Wayman M, Tseng MC. Inhibition?threshold substrate concentrations. Biotechnol Bioeng. 1976;18(3):383-7.

G?uszcz P, Petera J, Ledakowicz S. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor. Bioprocess Biosyst Eng. 2011;34(3):275-85.

Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995 Jun 1;90(430):773-95.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Saravanan P, Pakshirajan K, Saha P. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol. 2008;99(1):205-9.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-5.

Hasan SA, Jabeen S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol Biotechnol Equip. 2015 Jan 2;29(1):45-53.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Shukor MS, Shukor MY. Statistical diagnostic tests of the Luong model in fitting molybdenum reduction from the bacterium Bacillus sp. strain A.rzi. J Environ Microbiol Toxicol. 2014;2(2):53-7.

Downloads

Published

31.12.2022

How to Cite

Abubakar, A., & Yakasai, H. M. (2022). Growth Inhibition Kinetics of Acetonitrile Biodegradation. Journal of Biochemistry, Microbiology and Biotechnology, 10(2), 5–9. https://doi.org/10.54987/jobimb.v10i2.749

Issue

Section

Articles