A Review on Biosurfactant Properties, Production and Producing Microorganisms

Authors

  • Aminu Yusuf Fardami Department of Microbiology, Usmanu Danfodiyo University, Abdullahi Fodio Road, Sokoto, 234, Nigeria.
  • Abdullahi Hassan Kawo Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Sani Yahaya Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Ibrahim Lawal Department of Biological Sciences, Alqalam University Katsina, Dutsinma Road, 820102, Katsina, Nigeria.
  • Abdullahi Sani Abubakar Department of Microbiology, Usmanu Danfodiyo University, Abdullahi Fodio Road, Sokoto, 234, Nigeria.
  • Kamilu Adamu Maiyadi Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v10i1.656

Keywords:

Biosurfactant, Surface and interfacial activity, Bacteria, fungi, yeast

Abstract

Biosurfactants are structurally diverse surface-active agents mostly produced by various genera of bacteria, yeast and filamentous fungi that have a wide range of applications and properties. They have surface and interfacial activity, temperature and pH tolerance, biodegradability, low toxicity and anti-adhesive property. Their production was reported to be affected by temperature, PH, aeration and agitation, salt concentration and carbon and nitrogen sources. Bacteria species of the genera Acinetobacter, Arthrobacter, Agrobacterium, Antarctobacter, Bacillus, Clostridium, Lactobacillus, Halomonas, Serratia, Rhodococcus and filamentous fungi of the genera Aspergillus, penicillium, and yeast like Candida, Yarrowia, Torulopsis, Pseudozyma, Saccharomyces were the most notable biosurfactant producing microorganisms. Surfactin, lichenysin, rhamnolipid, Sapporolipid, liposan, viscosin, alasan, and subtilisin were among the most produced biosurfactants. The need to expand knowledge of physiology, genetics and biochemistry of biosurfactant-producing strains and the development of the process technology will help to reduce production costs.

References

Nitschke M, Costa S. Biosurfactants in food industry. Trends Food Sci Technol, 2007; (18), 252-259.

Desai J, Banat I. Microbial production of surfactants and their commercial potential. Microbiol. Mol Biol Rev,1997 (61): 47-64.

Rahman PK, Gakpe E. Production, characterisation and applications of biosurfactants: A review. Biotechnol, 2008;7:360-370.

Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol, 2010; (87): 427-444.

Rufino RD, Luna JM, Marinho PHC, Farias CBB, Ferreira SRM, Sarubbo LA. Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J Pet Sci Eng, 2013; (109):117-122.

Chandran P, Das N. Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol, 2010; (2): 6942-6953.

Cooper DG, Macdonald CR, Duff SJB, Kosaric N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol, 1981; (42): 408-412.

Das K, Mukherjee AK. Crude petroleum-oil Biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from north-east Ind Biores Technol, 2007; (98): 1339-1345.

Gharaei-Fathabad E. Biosurfactants in pharmaceutical industry: A minireview. Am J Drug Dis Dev, 2011; (1): 58-69.

Poremba K, Gunkel W, Lang S, Wagner F. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Wat Qual. 1991;6: 157- 163.

Hatha AAM, Edward G, Rahman KSMP. Microbial biosurfactants. Review. J Mar Atmos Res, 2007; (3): 1-17.

Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D. Production of new types of sophorolipids by Candida batistae. J Oleo Sci. 2008; (57): 359-369.

Gusmão CAB, Rufino RD, Sarubbo LA. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. Wor J Microbiol Biotechnol, 2010; (26): 1683-1692.

Safi A M, Gilherme S, Ki L, Lauro M, De S, Joel MA. Molecular structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE614, Chem Phys lip. 2007; (147): 1-13.

Zou C, Wang M, Xing Y, Lan G, Ge T. Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil- contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J, 2014; 90:49-58.

Jorge FBP, Eduardo J G, Rita-Costa RV, Jose AT. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 2013; 113: 259-268.

Onwosi CO, Odibo FJ C. Effect of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol. 2012; (28): 937-942.

Syldatk C, Lang S, Wagner F, Wray V, Witte L. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Natur for sch C, 1985; 40: 51-60.

Joshi PA, Shekhawat DB. Effect of carbon and nitrogen source on biosurfactant production by biosurfactant producing bacteria isolated from petroleum contaminated site. Adv Appl Sci Res, 2014; (5) 159-164.

Vollbrecht E, Heckmann R, Wray V, Nimtz M, Lang S. Production and structure elucidation of di- and oligosaccharide lipids (biosurfactants) from Tsukamurella sp. Nov Appl Microbiol Biotechnol, 1998; (50): 530-537.

Changjun Z, Meng W, Yu X, Guihong L, Tingting G. Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J, 2014; (90): 49-58.

Joice PA, Parthasarathi R. Optimisation of biosurfactant production from Pseudomonas aeruginosa PBSC1. Int J Curr Microbiol App Sci, 2014; (3): 140-151.

Cooper DG, Goldenberg BG. Surface-Active agents from two Bacillus species, Appl Environ Microbiol, 1987; (53), 224-229.

Sen R. Response surface optimization of the critical media components for the production of surfactin. J Chem Technol Biotechnol, 1997; (68): 263-270.

Khire JM, Khan MT. Microbially enhanced oil recovery (MEOR), importance and mechanism of MEO, Enz Microbiol Technol, 1994; (16): 170-172.

Coelho PA, Queiroz-Machado J, Sunkel CE. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis, J Cell Sci 2003;(23): 4763-4776.

Husain DR, Goutx M, Acquaviva M, Gilewicz M, Bertrand JC. The effect of temperature on eicosane substrate uptake modes by a marine bacterium Pseudomonasnautica strain 617: Relationship with the biochemical content of cells and supernatants, World J Microbiol Biotechnol,1997; (13): 587-590.

Desai AJ, Patel KM, Desai JD. Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons, Curr Sci, 1988; (s): 500-501.

Li Y, Yang S, Mu B. The Surfactin and lichenysin isoforms produced by Bacillus licheniformis HSN 221. Anal Lett, 2010; 43: 929-940.

Jyoti S, Durai S, Preeti S. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front Mol Biosci. 2021; 8: 727070

de Lima C J B, Ribeiro EJ, Sérvulo EFC, Resende M.M., Cardoso VL. sE,hanced Emulsan production by Acinetobacter calcoaceticus, Appl Biochem Biotechnol, 2008;152-156.

Matsuyama T, Keneda K, Ishizuka I, Toida T, Yano I. Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea, J Bacteriol, 1990 172(6): 3015-3022.

Peng F, Liu Z, Wang L, Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol, 2007; 102(6):1603-11.

Pepi M, Cesaro A, Liut G, Baldi F. An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiol Ecol, 2005 ;(53): 157-166.

Maneerat S, Phetrong K. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol, 2007;(29): 781-791.

Maneera S, Dikit P. Characterization of cell-associated bioemulsifier from Myroides sp. SM1, a marine bacterium. Songklanakarin J Sci Technol, 2007;(29): 769-779.

Jadhav M, Kalme S, Tamboli D, Govindwar S. Rhamnolipid from Pseudomonasdesmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol, 2011;(51): 385-396.

Choi WJ, Choi HG, Lee WH. Effects of ethanol and phosphate on emulsan production by Acinetobacter calcoaceticus RAG-1. J Biotechnol, 1996;(3), 217-225.

Robert M, Mercade M E, Bosch M P, Parra J L, Espuny M J. Effect of the carbon source on the biosurfactant production by P. aeruginosa 44T, Biotechnol Lett, 1989;(11): 871-874.

Neu TR, H¨artner T, Poralla K. Surface active properties of viscosin: A peptidolipid antibiotic. Appl Microbiol Biotechnol, 1990;(32): 518-520.

Fardami AY, Kawo AH, Yahaya S, Ahmad SA, Ibrahim UB. Stability and Optimization of Biosurfactant Production by Enterobacter cloacae AYF1 Arid Zone J Bas Appl Res. 2022;1 (1): 157-167.

Hisatsuka K, Nakahara T, Sano N, Yamada K. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation, Agr Biol Chem, 1971;(35): 686-692.

Nerurkar AS, Hingurao KS, Suthar HG. Bioemulsfiers from marine microorganisms. J Sci Ind Res 2009;(68): 273-277.

Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A. Biosurfactant Synthesis. Microb Cell Fact, 2009;(8): 63.

Sutyak KE, Wirawan RE, Aroutcheva AA, Chiindas M L. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product derived Bacillus amyliquefaceiens. J Appl Microbiol, 2008;(104): 1067-1074.

Yakimov M, Amro M, Bock M. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng, 1997;(18): 147-160.

Begley M, Cotter PD, Hill C, Ross RP. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for Lan M proteins. Appl Environ Microbiol, 2009; (75) :5451-5460.

McInerney MJ, Javaheri M, Nagle DP. Properties of the biosurfactant produced by Bacillus liqueniformis strain JF-2. Int J Microbiol Biotechnol, 1990;(5): 95-102.

Horowitz S, Gilbert JN, Griffin WM. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol Biotechnol, 1990;6(4): 243-248.

Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun, 1968;(31) 488-494.

Morikawa M, Ito M, Imanaka T. Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng, 1992;(74) :255-261.

Ban T, Sato T. Aqueous microbial biosurfactant solution exhibiting ultra-low tension at oil-water interfaces. Microbial enhancement of oil recovery-Recent advances (Proceedings of the 1992 international conference on microbial enhanced oil recovery) Premuzic ET, Woodhead A, (Eds.). Dev. Pet. Sci., 1993;(39): 115-125.

Eliseev SA, Vildanova-Martsishin RI, Shulga AN, Shabo ZV, Turovsky AA. (1991). Oil-washing bioemulsifier produced by Bacillus species potential application of bio-emulsier in oil removal for sand decontamination. Mikrobiol Zh, 1991;(53): 61-66.

Kosaric N. Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol, 2001(39): 295-304.

Barkay T, Navon-Venezia S, Ron E, Rosenberg E. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the emulsif ier alasan. Appl Environ Microbiol, 1999;(65): 2697-2702.

Limade C JB, Ribeiro EJ, S´ervulo EFC, Resende MM, Cardoso VL. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol, 2009;(152): 156-168.

Rosenberg E, Kaplan N. Surface active properties of Acinetobacter exopolysaccharides. In M. Inouye (Ed.), Bacterial outer membranes as model systems. Wiley. 1987;311-342

Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ. Alasan, a New Bioemulsifier from Acinetobacter Radioresistens. Appl Environ Microbiol, 1995;61 (9), 3240-3244. 10.1128/aem.61.9.3240-3244.1995

Kaplan N, Rosenberg E, Jann B. Jann K. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Appl Environ Microbiol, 1985;(152): 453-8.

Guti´errez T, Mulloy B, Bavington C, Black K, Green DH. Partial purification a chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium antarctobacter. Appl Microbiol Biotechnol, 2007;(76): 1017-1026.

Suzuki T, Tanaka H, Itoh S. Sucrose lipids of Arthrobacter, Corynebacterium and Nocardia grown in sucrose. Agric Boil Chem, 1974;(38): 557-563.

Shulga A N, Karpenko EV, Eliseev SA, Turovsky AA, Koronelli TV. Extracellular lipids and surface-active properties of the bacterium Rhodococcus erythropolis depending on the source of carbon nutrition. Mikrobiol, 1990;(59): 443-447.

Drouin CM, Cooper DG. Biosurfactant and aqueous two phase fermentation. Biotechnol Bioeng, 1992(40): 86-90.

Singer ME, Finnerty WR. Phisiology of biosurfactant synthesis by Rhodococcus species H13A. Can J Microbiol,1990; (36): 741-745.

Levy N, Baror Y, Magdassi S. Flocculation of bentonite particles by a cyanobacterial bioflocculant. Coll Surf, 1990;(48) 337-349.

Cooper DG, Zajic JE. Surface compounds from microorganisms. Adv Appl Microbiol, 1980;(26): 229-256.

Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metalcontaminated soils and groundwater: an evaluation. Eng Geol, 2001;60(1-4);193-207.

Oloke JK, Glick BR. Production of Bioemulsifier by an unusual isolate of salmonlred melanin containing Rhodotorula glutinis. Afr J Biotechnol, 2005;4(2): 164-171.

Lai CC, Huang YC, Wei YH, Chang JS. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater., 2009;(167):609-614.

Casas JA, Garcia-Ochoa F. Sophorolipid production by Candida bombicola medium composition and culture methods. J Biosci Bioeng, 1999;(88):488-494.

Zinjarde SS, Pant A. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Int J Biochem Phys Gen Morphol Ecol Microorgan, 2002;42(1):67-73.

Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T. Production of mannosylerythriol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett, 1992;(14): 305-310.

Göbbert U, Lang S, Wagner F. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol let, 1984; 6(4):225-30.

Mallee-III FM. Assimilation of Alkanes by C?a?n?d?i?d?a? T?r?o?p?i?c?a?l?i?s?. University of Delaware; 1980.

Lesik OY, Karpenko EV, Elysseev SA, Turovsky AA. The surface-active and emulsifying properties of Candida lipolytica Y-917 grown on n-hexadecane. Microbiol J, 1989;(51): 56-59.

Shepherd R, Rockey J, Sutherland IW, Roller S. Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol, 1995;(40): 207-217.

Amezcua-Vega C, Poggi-Varaldo HM, Esparza-Garcia, F, R´?os-Leal E, Rodr´?guez-V´azquez R. Effect of culture conditions on fatty acid composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour. Technol, 2007;(98): 237-240.

Sarubbo LA, Farias CBB, Campos-Takaki GM. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol, 2007;( 54): 68-73.

Felse PA, Shah V, Chan J, Rao K J, Gross RA. Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enz Microbial Technol, 2007;(2): 316-323.

Cirigliano M, Carman G. Isolation of a bioemulsifier from Candida lipodytica. Appl Environ Microbiol, 1984(48): 747-750.

Cavalero DA, Cooper DG. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol, 2003;(103): 31-41.

Hommel R, Huse K. Regulation of Sophorose Lipid Production by Candida (Torulopsis) apicola. Biotechnol lett. 2003;15(8):853-858.

Tulloch AP, Hill A, Spencer JFT. Structure and reactions of lactonic and acidic sophorosides of 17-hydroxyoctadecanoic acid. Can J Chem, 1968;46:3337-3351.

Singh M, Desai JD. Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. Indian J Exp Biol,1989; 27(3): 224-226.

Zajic JE, Gignard H, Gerson DF. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng,1977; (19): 1303-1320.

Akit J, Cooper DJ, Mannien KI, Zajic JK.. Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr Microbiol,1981;(6): 145-150.

Cooper DG, Zajic ZEL, Gracey DEF. Analysis of Corynomycolic Acids and Other Fatty Acids Produced by Corynebacterium lepus Grown on Kerosene. J Bacteriol, 1979;137(2): 795-801.

Gao YZ, Li QL, Ling WT, Zhu XZ. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J Hazard Mater, 2011(185):703-709.

Amaral PFF, Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, Coutinho JAP. Production and characterization of a bioemulsiftier from Yarrowia lipolytica. Proc Biochem, 2006;(41):1894-1898.

Zinjarde SS, Chinnathambi S, Lachke AH, Pant A. Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoeletric focusing unit. Lett Appl Microbiol, 1997;(24): 117-121.

Zinjarde S, Pant A. Emulsifier from tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Bas Microbiol, 2002;(42): 67-73.

Trindade JR, Freire MG, Amaral PFF, Coelho MAZ, Coutinho JAP, Marrucho IM. Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Coll Surf A Physicochem Eng Aspects, 2008; 324(1-3): 149-154.

Teichmann B, Linne U, Hewald S, Marahiel MA, Bolker M. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol, 2007;(66): 525-533.

Passeri S, Schmidt M, Haffner T, Wray V, Lang S, Wagner F. Marine biosurfactants IV production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol, 1992( 37): 281-286.

MacDonald C R, Cooper DG, Zajic JE. Surface active lipids from Nocardia erythropolis grown on hydrocarbon. Appl Environ Microbiol, 1981;(41): 117-123.

Wasko MP, Bratt RP. Properties of a biosurfactant produced by the fuel contaminant Ochorbactrum anthrrpii. Int Biodeter Biode, 1990;(27): 265-273.

Lesik OY, Elyseev SA, Polulyakh OV, Karpenko EV. Production of a surface-active complex by the culture of carotene-synthesizing yeast Phaffia rhodozyma and its emulsifying properties. Microbiol J, 1991;53, 36-40.

Inoue, S. and Ito, S. Production of Biosurfactant from yeast isolated from marine environment. Biotechnol Lett, 1982;4(1): 3-8.

Lin W, Brauers G, Ebel R, Wray V, Sudarsono A, Proksch P. Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod, 2003;(66) 57-61.

Nielsen TH, Christophersen C, Anthoni V, Sorensen J. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR 54. J Appl Microbiol, 1999;(87): 80-90.

Holler U, Konig GM, and Wright A. Three new metabolites from marine derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod,1992; (62): 114-118.

Cooper D G, Paddock DA. Surfactant synthesis from Candida bombicola. Appl Environ Microbiol. 1983;(46) 1426-1429.

Kakugawa K, Tamai M, Imamura K, Miyamoto K, Miyoshi S. Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythriotol lipid. Biosci Biotechnol Biochem, 2002;(66): 188-191

Weber L, Doge C, Haufe G. Oxygenation of hexadecane in the biosynthesis of cyclic glycolipids in Torulopsis apicola. Biocatal,1992;(5): 262-272.

Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D.. Discovery of Pseudozymarugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol, 2006;(73): 305-313.

Rau U, Nguyen AL, Roeper H, Koch H. Downstream processing of mannosylerythritol lipids produced by Pseudozyma aphidis. Eur J Lip Sci Technolo, 2005;107(6):373-380.

Cameron, D. R., Cooper, D. G. and Neufeld, R. Production of Mannosyl erythritol lipids by Candida bambicola. Appl Environ Microbiol, 1988 ;(54): 1420-5.

Lukondeh T, Ashbolt N J, Rogers P L. Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J Ind Microbiol Biotechnol, 2003; 30(12): 715-720.

Johnson V, Singh M, Saini VS. Bioemulsifier production by an oleaginous yeast Rhodotorula glutinis IIP-30. Biotechnol Lett, 1992; (14): 487-490.

Downloads

Published

31.07.2022

How to Cite

Fardami, A. Y. ., Kawo, A. H., Yahaya, S., Lawal, I. ., Abubakar, A. S. ., & Maiyadi, K. A. . (2022). A Review on Biosurfactant Properties, Production and Producing Microorganisms. Journal of Biochemistry, Microbiology and Biotechnology, 10(1), 5–12. https://doi.org/10.54987/jobimb.v10i1.656

Issue

Section

Articles