Kinetic Study of Malathion Biosorption Using Dry Cells of an Isolated Bacillus sp. S14

Authors

  • Ibrahim Alhaji Sabo Department of Microbiology, Faculty of Pure and Applied Sciences, Federal University Wukari, P.M.B. 1020 Wukari, Taraba State, Nigeria.
  • Salihu Yahuza Department of Microbiology and Biotechnology, Faculty of Science, Federal University Dutse, P.M.B., 7156, Dutse, Jigawa State, Nigeria.
  • Abdussamad Abubakar Department of Microbiology, Faculty of Science, Bauchi State University, Gadau, PMB 65, Nigeria.
  • Bilal Ibrahim Dan-Iya Pharmacy Technician Department, College of Health Sciences and Technology, Kano Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v10i1.655

Keywords:

kinetics, adsorption, Bacillus sp, Malathion, Pollutants

Abstract

Pesticides Pollutants are a major ecological issue because they kill organisms that are not their intended targets. Even in trace amounts, their diversity, toxicity, and durability are harmful to natural systems. High levels of malathion in the air, water, or food can make breathing difficult, tighten the chest, cause nausea, cramps, diarrhoea, watery eyes, impaired vision, salivation, perspiration, headaches, and even cause death. Two kinetic models—pseudo-1st- and pseudo-2nd order were used to examine the sorption isotherm of malathion onto Bacillus sp. S14, and they were fitted using non-linear regression. The pseudo-1st order model was found to be the best model by statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian information criterion (BIC), and Hannan-Quinn information criterion (HQC). A kinetic study employing the pseudo-1st order model at 150 PPM yielded an equilibrium sorption capacity qe of 4.19 mg/g (95% confidence interval from 4.137448 to 4.257148) and a pseudo-1st-order rate constant, k1 of 0.53. (95 percent confidence interval from 0.510371 to 0.559508). Further analysis is required to give evidence for the chemisorption mechanism commonly associated with this kinetic.

References

Liani C, Katoch SS. Biosorption of Malathion pesticide using Spirogyra sp. Surjit Singh Katoch Int J Environ Agric Res IJOEAR ISSN. 2017;3(3):15-20.

Adhikari S, Chattopadhyay P, Ray L. Biosorption of malathion by dry cells of an isolated bacillus sp. S14. Chem Speciat Bioavailab. 2010;22(3):207-13.

Adhikari S, Chattopadhyay P, Ray L. Continuous removal of malathion by immobilised biomass of Bacillus species S14 using a packed bed column reactor. Chem Speciat Bioavailab. 2012;24(3):167-75.

Yadamari T, Yakkala K, Battala G, Gurijala RN. Biosorption of Malathion from Aqueous Solutions Using Herbal Leaves Powder. Am J Anal Chem. 2011;02(08):37-45.

Sinha S, Yadav G, Kaushik BR, Dounde S, Janghel D. Histopatological Impact of Malathion on the testicular cells of freshwater crabs Barytelhusa cunicularis (WESTWOOD, 1836). World J Pharm Pharm Sci. 2018;7:997-1007.

Walker WW, Stojanovic BJ. Malathion degradation by an Arthrobacter species. J Environ Qual. 1974;3(1):4-10.

Mostafa IY, Fakhr IMI, Bahig MRE, El-Zawahry YA. Metabolism of organophosphorus insecticides - XIII. Degradation of malathion by Rhizobium spp. Arch Für Mikrobiol. 1972;86(3):221-4.

Paris DF, Lewis DL, Wolfe NL. Rates of Degradation of Malathion by Bacteria Isolated from Aquatic Systems. Environ Sci Technol. 1975;9(2):135-8.

Konrad JG, Chesters G, Armstrong DE. Soil degradation of malathion, a phosphorodithioate insecticide. Soil Sci Soc Am J. 1969;33(2):259-62.

Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S. Removal of lindane and malathion from wastewater using bagasse fly ash - A sugar industry waste. Water Res. 2002;36(10):2483-90.

Chatterjee S, Das SK, Chakravarty R, Chakrabarti A, Ghosh S, Guha AK. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. J Hazard Mater. 2010;174(1-3):47-53.

Sabo IA, Yahuza S, Dan-Iya BI, Abubakar A. Kinetic Analysis of the Adsorption of Malachite Green onto Graphene Oxide Sheets Integrated with Gold Nanoparticles. J Biochem Microbiol Biotechnol. 2021 Dec 31;9(2):48-52.

Yang C, Yu H, Jiang H, Qiao C, Liu R. An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and ?-hexachlorocyclohexane. J Basic Microbiol. 2016;56(7):820-6.

Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, et al. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation. Int Biodeterior Biodegrad. 2014;88:169-75.

Nomikou N, Hughes P, McHale AP. Use of an electric field-assisted biosorption process in the removal of hazardous or precious ionic species from wastewater streams. J Chem Technol Biotechnol. 2006;81(9):1514-9.

Aksu Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005;40(3-4):997-1026.

Rohatgi A. WebPlotDigitizer User Manual 4.3. HttparohatgiinfoWebPlotDigitizerapp Accessed June 2 2014. 2020;1-17.

Dan-Iya BI, Yahuza S, Sabo IA. Kinetic Analysis of the Adsorption of Chromium onto Calcium Alginate Nanoparticles. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021;5(2):8-13.

Sabo IA, Yahuza S, Dan-Iya BI, Abubakar A. Kinetic Analysis of the Adsorption of Malachite Green onto Graphene Oxide Sheets Integrated with Gold Nanoparticles. J Biochem Microbiol Biotechnol. 2021;9(2):48-52.

Halmi M, Wan Johari W, Mohd Ali M, Shaharuddin N. Isolation of molybdenum-reducing bacterium; Serratia sp. Strain MIE2 from agriculture soil and its potential use in soil bioremediation. J Biochem Microbiol Biotechnol. 2017;5(2):12-8.

Sabo IA, Yahuza S, Shukor MY. Molybdenum Blue Production from Serratia sp. strain DRY5: Secondary Modeling. Bioremediation Sci Technol Res. 2021;9(2):21-4.

Abubakar M, Ahmad SA, Yasid NA, Rahman MFA, Alias SA, Hassan NAA, et al. Mathematical modelling of the growth of an Antarctic bacterium Rhodococcus sp. strain ADL36 on palm oil. In 10-3 Midori-cho, Tachikawa, Tokyo, Japan: National Institute of Polar Research (NIPR); 2018. Available from: http://id.nii.ac.jp/1291/00015259/

Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451-65.

Aisami A, Shukor MYA. Predictive Mathematical Modelling of the Total Number of COVID-19 Cases for the Kingdom of Saudi Arabia. J Environ Microbiol Toxicol. 2020 Jul 31;8(1):11-5.

Yahuza S, Dan-Iya BI, Sabo IA. Modelling the Growth of Enterobacter sp. on Polyethylene. J Biochem Microbiol Biotechnol. 2020 Jul 31;8(1):42-6.

Motulsky HJ, Ransnas L a. Fitting curves nonlinear regression?: review a practical. FASEB J. 1987;1(5):365-74.

Aike HAI. A New Look at the Statistical Model Identification. 1974;

Burnham, and Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. second edi. Anderson KPBDR, Model, editors. Springer Science & Business Media.; 2002.

Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90(430):773-95.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Downloads

Published

31.07.2022

How to Cite

Sabo, I. A. ., Yahuza, S. ., Abubakar, A. ., & Dan-Iya, B. I. . (2022). Kinetic Study of Malathion Biosorption Using Dry Cells of an Isolated Bacillus sp. S14. Journal of Biochemistry, Microbiology and Biotechnology, 10(1), 1–4. https://doi.org/10.54987/jobimb.v10i1.655

Issue

Section

Articles