Mathematical modelling of glyphosate degradation rate by Bacillus subtilis

Authors

  • Motharasan . Manogaran Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Siti Aqlima Ahmad Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/jobimb.v5i1.336

Keywords:

mathematical modelling, glyphosate, glyphosate-degrading, Bacillus subtilis, Aiba

Abstract

Glyphosate is an agricultural herbicide with usage in the amounts of thousands of tonnes per year in Malaysia. In certain soils, glyphosate can persist for months and its removal through bioremediation is the most economical and practical. A previously isolated glyphosate-degrading bacterium showed substrate inhibition to the degradation rate. Important degradation inhibition constants can be reliably obtained through nonlinear regression modelling of the degradation rate profile using substrate inhibition models such as Luong, Yano, Teissier-Edward, Aiba, Haldane, Monod and Han and Levenspiel models. The Aiba model was chosen as the best model based on statistical tests such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF) and accuracy factor (AF). The calculated values for the Aiba-Edwards constants qmax (the maximum specific substrate degradation rate (h−1), Ks (concentration of substrate at the half maximal degradation rate (mg/L) and Ki (inhibition constant (mg/L)) were 131±34, 4446±2073, and 24323±5094, respectively. Novel constants obtained from the modelling exercise would be useful for further secondary modelling implicating the effect of media conditions and other factors on the degradation of glyphosate by this bacterium. 

References

Duke SO, Powles SB. Glyphosate: A once-in-a-century herbicide. 2008;64(4):319-25.

Della-Cioppa G, Bauer SC, Klein BK, Shah DM, Fraley RT, Kishore GM. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6873-7.

Folmar LC, Sanders HO, Julin AM. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol. 1979 May 1;8(3):269-78.

Neškovi? NK, Poleksi? V, Elezovi? I, Karan V, Budimir M. Biochemical and Histopathological Effects of Glyphosate on Carp, Cyprinus carpio L. Bull Environ Contam Toxicol. 1996 Feb 1;56(2):295-302.

Bazot S, Lebeau T. Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free-and/or immobilized-cells formulations. Appl Microbiol Biotechnol. 2008;77(6):1351-8.

Lerbs W, Stock M, Parthier B. Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch Microbiol. 1990 Jan 1;153(2):146-50.

Dick RE, Quinn JP. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol. 1995 Jul;43(3):545-50.

McAuliffe KS, Hallas LE, Kulpa CF. Glyphosate degradation byAgrobacterium radiobacter isolated from activated sludge. J Ind Microbiol. 1990 Nov 1;6(3):219-21.

Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, et al. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol. 2012 Jan;93(2):787-96.

Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, et al. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res GMR. 2015 Nov 23;14(4):14717-30.

Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor MS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca strain Saw-5 in soils from Sarawak. Agrivita. 2016;38(1):1-13.

Manogaran M, Shukor MY, Yasid NA, Johari WLW, Ahmad SA. Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei. 2017 May 11;1-9.

Ahmad SA, Ahamad KNEK, Johari WLW, Halmi MIE, Shukor MY, Yusof MT. Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei. 2014;25(4):505-12.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-5.

Shukor MS, Shukor MY. Statistical evaluation of the mathematical modelling on the molybdenum reduction kinetics of a molybdenum-reducing bacterium. J Environ Bioremediation Toxicol. 2015;2(2):62-6.

Monod J. The Growth of Bacterial Cultures. Annu Rev Microbiol. 1949;3(1):371-94.

Andrews JF. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng. 1968 Nov 1;10(6):707-23.

Edwards VH. The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng. 1970;12(5):679-712.

Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng. 1968 Nov 1;10(6):845-64.

Yano T, Koga S. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol Bioeng. 1969 Mar 1;11(2):139-53.

Han K, Levenspiel O. Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng. 1988;32(4):430-7.

Luong JHT. Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng. 1987;29(2):242-8.

Rohatgi.A..WebPlotDigitizer. http://arohatgi.info/WebPlotDigitizer/app/ Accessed June 2 2014.; 2015.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian J Plant Biol. 2014;2(1):1-6.

Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif. 2017 Mar 1;41(2):323-39.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1(5):365-74.

Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products. Int J Food Microbiol. 2000;62(3):231-45.

Bakhshi Z, Najafpour G, Kariminezhad E, Pishgar R, Mousavi N, Taghizade T. Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. 2011;3330(November 2016).

Sahinkaya E, Dilek FB. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics. Biodegradation. 2007;18(4):427-37.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Wayman M, Tseng MC. Inhibition threshold substrate concentrations. Biotechnol Bioeng. 1976;18(3):383-7.

Mulchandani A, Luong JHT, Groom C. Substrate inhibition kinetics for microbial growth and synthesis of poly-?-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl Microbiol Biotechnol. 1989;30(1):11-7.

Ranjbar S, Aghtaei HK, Jalilnejad E, Vahabzadeh F. Application of an airlift reactor with a net draft tube in phenol bio-oxidation using Ralstonia eutropha. Desalination Water Treat. 2016 Nov 19;57(54):25972-84.

Wright PC, Tanaka T. Physiological modelling of the response of Kocuria rosea exposed to changing water activity. Biotechnol Lett. 2002;24(8):603-9.

Downloads

Published

31.07.2017

How to Cite

Manogaran, M. ., Yasid, N. A., & Ahmad, S. A. (2017). Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. Journal of Biochemistry, Microbiology and Biotechnology, 5(1), 21–25. https://doi.org/10.54987/jobimb.v5i1.336

Issue

Section

Articles