Kojic acid esters: Comparative review on its methods of synthesis

Authors

  • Nurazwa Ishak Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia.
  • Ahmad Firdaus B. Lajis Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia.
  • Rosfarizan Mohamad Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia.
  • Arbakariya B. Ariff Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia.
  • Murni Halim Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia.
  • Helmi Wasoh Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor, Malaysia

DOI:

https://doi.org/10.54987/jobimb.v4i2.304

Keywords:

kojic acid derivatives, organic synthesis, solvent-free system, biological reactors, lipases,

Abstract

In this paper, the syntheses of kojic acid esters via chemical and enzymatic methods are reviewed. The advantages and disadvantages of chemical process in term of process, safety and efficiency are discussed. In enzymatic process, the significant process parameters related to the synthesis of kojic acid esters such as the lipases, solvent, temperature and water content are highlighted. Possible enzymatic synthesis using solvent and solvent-free system taking into consideration of the difference in these systems involving cost, lipase reusability and efficiency is comparatively reviewed. The possible approach for large scale production using various enzyme reactor designs is also discussed and re-evaluated.

References

El-Aasar, SA. Cultural conditions studies on kojic acid production by Aspergillus paraciticus. Int J Agric Biol. 2006;8:468-473.

Mohamad R, Mohamed MS, Suhaili N, Salleh MM, Ariff A. Kojic acid: Applications and development of fermentation process for production. Biotechnol Mol Biol Rev. 2010;5(2):24-37.

Aytemir MD, Calis U. Anticonvulsant and neurotoxicity evaluation of some novel kojic acids and allomaltol derivatives. Archiv der Pharmazie. 2010;343(3):173-181.

Bransova J, Brtko J, Uher M, Novotny L. Antileukemic activity of 4-pyranone derivatives. Int J Biochem Cell Biol. 1995;27: 701-706.

Brtko J, Rondahl L, Fickova M, Hudecova D, Eybl V, Uher M. Kojic acid and its derivatives: history and present state of art. Cent Eur J Pub Health. 2004;12:16-18.

Aytemir MD, Özçelik B. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. European J Medicinal Chem. 2010;45(9): 4089-4095.

Aytemir MD, Erol DD, Hider RC, Ozalp M. Synthesis and evaluation of antimicrobial activity of new 3-Hydroxy-6-methyl-4-oxo-4H -pyran-2-carboxamide derivatives. Turk J Chem. 2003;27:757-776.

Aytemir MD, Ozçelik B, Karakaya G. Evaluation of bioactivities of chlorokojic acid derivatives against dermatophytes couplet with cytotoxicity. Bioorg Med Chem Lett. 2013;23(12):3646-3649.

Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: Synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem. 2013;68C:185-191.

Vajragupta O, Boonchoong P, Sumanont Y, Watanabe H, Wongkrajang Y, Kammasud N. Manganese-based complexes of radical scavengers as neuroprotective agents. Bioorg Med Chem. 2003;11(10):2329-2337.

Kang SS, Kim HJ, Jin C, Lee YS. Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl)acrylic acid ester derivatives. Bioorg Med Chem Lett. 2009;19:188-191.

Rho HS, Baek HS, You JW, Kim S, Lee JY, Kim DH, Chang IS. New 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one derivatives has both inhibitory and antioxidant properties. Bull Korean Chem Soc. 2007;28(3):471-473.

Raku T, Tokiwa Y. Regioselective synthesis of kojic acid esters by Bacillus subtilis protease. Biotechnol Lett. 2003;25:969-974.

Lajis AF, Basri M, Mohamad R, Hamid M, Ashari SE, Ishak N, Zoolkiflie A, Ariff A. Enzymatic synthesis of kojic acid esters and their potential industrial applications. Chem Pap. 2013;67(6):573-585.

Al-Edresi S, Baie S. In-vitro and in-vivo evaluation of a photo-protective kojic dipalmitate loaded into nano-creams. Asian J Pharm Sci. 2010;5(6):251-265.

Khamaruddin NH, Basri M, Lian GEC, Salleh AB, Raja Abdul Rahma, RAZ, Ariff A, Mohamad R, Awang R. Enzymatic Synthesis and characterization of palm-based kojic acid ester. J Oil Palm Res. 2008;20:461-469.

Manosroi A, Wongtrakul P, Manosroi J, Midorikawa U, Hanyu Y, Yuasa M, Sugawara F, Sakai H, Abe M. The entrapment of kojic oleate in bilayer vesicles. Int J Pharm. 2005;298(1):13-25.

Arcos JA, Bernabe M, Otero C. Quantitative enzymatic production of 1,6-diacyl fructofuranoses. Enzyme Microbial Technol. 1998;22:27-35.

Dholakiya BZ. Super phosphoric acid catalyzed biodiesel from low cost feed stock. Arch Appl Sci Res. 2012;4(1):551-561.

Liu X, Gong I, Xin M, Liu J. The synthesis of sucrose ester and selection of its catalyst. J Mol Cat A: Chem. 1999147:37-40.

Cho JC, Rho HS, Baek HS, Ahn SM, Woo BY, Hong YD, Cheon JW, Heo JM, Shin SS, Park YH, Suh KD. Depigmenting activity of new kojic acid derivative obtained as a side product in the synthesis of cinnamate of kojic acid. Bioorg Med Chem Lett. 2012;22:2004-2007.

Adamopoulos L. Understanding the Formation of Sugar Fatty Acid Esters. Master's Thesis, North Carolina State University, North Carolina, United States, 2006.

Zirak M, Eftekhari-sis B. Kojic acid in organic synthesis. Turk J Chem. 2015;1:1-58.

Kobayashi Y, Kayahara H, Tadasa K, Tanaka H. Synthesis of n-kojic-amino acid and n-kojic-amino acid-kojiate and their tyrosinase inhibitory activity. Bioorg Med Chem Lett. 1996;6(12):1303-1308.

Syamsul KMW, Salina MR, Siti SO, Hanina MN. Green synthesis of lauryl palmitate via lipase-catalyzed reaction. World Appl Sci J. 2010;11(4):401-407.

Gumel AM, Annuar MSM, Heidelberg T, Chisti Y. Lipase mediated synthesis of sugar fatty esters. Process Biochem. 2011;46:2079-2090.

Liu KJ, Shaw JF. Lipase-catalyzed synthesis of kojic acid esters in organic solvents. J Am Oil Chem Soc. 1998;75:1507-1511.

Chen HC, Kuo CH, Twu YK, Chen JH, Chang CMJ, Liu,YC, Shieh CJ. A continuous ultrasound-assisted packed-bed bioreactor for the lipase-catalyzed synthesis of caffeic acid phenethyl ester. J Chem Technol Biotechnol. 2011;86(10):1289-1294.

Ashari SE, Mohamad R, Ariff A, Basri M, Salleh AB. Optimization of enzymatic synthesis of palm-based kojic acid ester using response surface methodology. J Oleo Sci. 2009;58(10):503-510.

Lajis AF, Hamid M, Ariff A. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol. 2012;Article ID 952452, 9 pages.

El-Boulifi N, Ashari SE, Serrano M, Aracil J, Martinez M. Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivatives of kojic acid. Enzyme Microbial Technol. 2014;55:128-132.

Schmidt RD, Veger R. Lipases: Interfacial enzymesn with attractive applications. Angew Chem Int Ed. 1998;37:608-1633.

Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM. Advances in lipase-catalyzed esterification reactions. J Biotechnol Adv. 2013;31:1846-1859.

Jaeger KE, Dijkstra BW, Reetz M.T. Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann Rev Microbiol. 1999;53:315-351.

Reetz MT. Lipases as practical biocatalysts. Curr Opin Chem Biol. 2002;6:145-150.

Villeneuve P, Muderhwa JM, Graile J, Hass MJ. Customizing lipases for biocatalysis: A survey of chemical physical and molecular biological approaches. J Mol Cat B: Enzym. 2000;9:113-148.

Ray A. Application of lipase in industry. Asian J Pharm Technol. 2012;2(2):33-37.

Hari Krishna S, Divakar S, Prapulla SG, Karanth NG. Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J Biotechnol. 2001;87:193-201.

Sharma S, Shamsher SK. Organic solvent tolerent lipases and applications. Sci World J Rev. Art. 2014;Article ID 625258, 15 pages.

Ozturk B. Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. Master's Thesis, Izmir Institute of Technology, Turkey, 2001.

Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications. Process Biochem. 2012;47:555-569.

Kosugi Y, Tanaka H, Tomizuka N. Continuous hydrolysis of oil by immobilized lipase in a countercurrent reactor. Biotechnol Bioeng.1990;36(6):617-622.

Adlercreutz P. Immobilisation and application of lipases in organic media. Chem Society Rev. 2013;42:6406-6436.

Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. Biotechnology. 2013;3:1-9.

Khan AA, Alzohairy MA. Recent advances and applications of immobilized enzyme technologies: A review. Res J Biol Sci. 2010;5(8):565-575.

Carrea G, Riva S. Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed. 2000;39:2226-2254.

Castillo E, Pezzotti F, Navarro A, López-Munguía A. Lipase catalyzed synthesis of xylitol monoesters: Solvent engineering approach. J Biotechnol. 2003;102: 251-259.

Watanabe Y, Miyawaki Y, Adachi S, Nakanishi K, Matsuno R. Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents. Enzyme Microbiol Technol. 2001;29: 494-498.

Zhang X, Kobayashi T, Adachi S, Matsuno R. Lipase-catalyzed synthesis of 6-O-vinylacetyl glucose in acetonitrile. Biotechnol Letters. 2002; 24: 1097-1100.

Servat F, Montet D, Pina M, Galzy P, Arnaud A, Ledon H, Marcou L, Graillie J. Synthesis of fatty hydroxamic acid catalyzed by the lipase of Mucor miehei. J Oil Chem Soc. 1990;67(10): 646-649.

Tewari YB, Schantz MM, Vanderah DJ. Thermodynamics of the lipase-catalyzed esterification of 1-dodecanoic acid with menthol in organic solvents. J Chem Eng Data. 1999;44: 641-647.

Daniel RM, Dines M, Petach H. The denaturation and degradation of stable enzyme at high temperature. Biochem J. 1996;317:1-11.

Sharma R, Thakur V, Sharma M, Birkeland NK. Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of Thermophiles. Springer, London, 2013.

Abdul Wahab R, Basri, M, Raja Abdul Rahman R.N.Z, Salleh AB, Abdul Rahman AB, Chaibakhsh N, Leow TC. Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnol Biotechnol Equip. 2014;28(6):1065-1072.

Aracil J, Garcia T, Martinez M. Enzymatic synthesis of an analogue of jojoba oil: Optimization by statistical analysis. Enzyme Microbial Technol. 1993;15:607-611.

Sheldon R. Catalytic reactions in ionic liquids. Chem Comm. 2001;2399-2407.

Xu Y. Process Technology for Immobilized Lipase-Catalyzed Reaction. Phd Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2012.

Turon F, Caro Y, Villeneuve P, Graille J. Effect of water content and temperature on Carica papaya lipase catalyzed esterification and transesterification reactions. John Libbey Eurotext. 2003;10:400-4004.

Bradoo S, Saxena RK, Gupta R. High yields of ascorbyl palmitate by thermostable lipase-mediated esterification. J Am Oil Chem. Soc. 1999;76:1291-1295.

Kang IJ, Pfromm PH, Rezac ME. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. J Biotechnol. 2005;119(2):147-154.

Sharma CK, Kanwar SS. Synthesis of methyl cinnamate using immobilized lipase from B. Licheniformis MTCC-10498. Res J Recent Sci.2012;1(3): 68-71.

Pan X, Chen B, Wang J, Zhang X, Zhul B, Tan, T. Enzymatic synthesizing of phytosterol oleic esters. Appl Biochem Biotechnol. 2012;168(1): 68-77.

Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;77:965-977.

Marchitan N, Cojucaru C, Mereut, A, Duca G, Cretescu I, Gonta M. Modelling and optimization of tartaric acid reactive extraction from aqueous solutions: A comparison between response surface methodology and artificial neural network. Sep Purif Technol. 2010;75:273-285.

Chen CS, Liu KJ, Lou YH, Shieh CJ. Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. J Sci Food Agri. 2002;82:601-605.

Neta NS, Peres AM, Teixeira JA, Rodrigues LR. Maximization of fructose esters synthesis by response surface methodology. New Biotechnol. 2011;28:349-355.

Sun WJ, Zhao HX, Cui FJ, Li YH, Yu SL, Zhou Q, Qian JY, Dong Y. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chem Cent J. 2013;7:114-126.

Keng PS, Basri M, Rahman MBA, Salleh AB, Rahman RNZA, Ariff A. Optimization of palm-based wax ester production using statistical experimental designs. J Oleo Sci. 2005;54:519-528.

Bidin H, Basri, M Radzi SM, Ariff A, Rahman RNZA, Salleh AB. Optimization of lipase-catalyzed synthesis of palm amino acid surfactant using response surface methodology (RSM). Ind Crops Prod. 2009;30:206-211.

Soo EL, Salleh AB, Basri M, Rahman RNZA, Kamaruddin K. Response surface methodological study on lipase-catalyzed synthesis of amino acid surfactants. Process Biochem. 2004;39:1511-1518.

Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy. 2008;33:1678-1684.

Scragg A.H. Bioreactors in biotechnology. London: Ellis Horwood, 1991.

Ferreira BS, Fernandes P, Cabral JMS. Design and modelling of immobilized biocatalytic reactors. In Multiphase Bioreactor Design, ed. J.M.S. Cabral, M. Mota, and J. Tramper, pp. 85-114. London: Taylor & Francis, 2001.

Mat Radzi S, Basri M, Salleh AB, Ariff A, Mohamad R, Abdul Rahman MB, Raja Abdul Rahman RNZ. High performance enzymatic synthesis of oleyl oleate using immobilised lipase from Candida rugosa. Electron J Biotechnol. 2005;8(3):291-298.

Doran MP. Bioprocess Engineering Principles. London: Academic Press, 2003.

Kadic A, Palmqvist B, Liden G. Effects of agitation on particle size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol Biofuels. 2014;7:77-86.

McDonough RJ. Mixing for the Process Industries. New York: Van Norstrand Reinhold, 1992.

Chaibakhsh N, Abdul-Rahman MB, Vahabzadeh F, Abd-Aziz S, Basri M, Salleh AB. Optimization of operational conditions for adipate ester synthesis in a stirred tank reactor. Biotechnol Bioprocess Eng. 2010;15(5):846-853.

Chaibakhsh N, Basri M, Abdul Rahman MB, Adnani A, Salleh AB. Lipase-catalyzed synthesis of ergosterol ester. Biocat Agric Biotechnol. 2012;1:51-56.

Deng L, Wang XJ, Nie KL, Wang F, Liu JF, Wang P, Tan TW. Synthesis of wax esters by lipase-catalyzed esterification with immobilized lipase from Candida sp. 99-125. Chinese J Chem Eng. 2011;19(6):978-982.

Keng PS, Basri M, Ariff AB, Mohd Basyaruddin AR, Rahman RNZ, Salleh AB. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Bioresour Technol. 2008;99(14):6097-6104.

Mat Radzi S, Basri M, Salleh AB, Mohamad R, Abdul Rahman MB, Abdul Rahman RNZ. Kinetics of enzymatic synthesis of liquid wax ester from oleic acid and oleyl alcohol. J Oleo Sci. 2010;59(3):127-34.

Habulin M, Krmelj V, Knez Z. Synthesis of oleic acid esters catalyzed by immobilized lipase. J Agric Food Chem. 1996;44(1):338-342

Bartal N, Serrati G, Szewczyk D, Waterman J. Modelling of a Catalytic Packed Bed Reactor and Gas Chromatograph Using COMSOL Multiphysics. Degree's Project Report, Worchester Polytechnic Institute, United States, 2009.

Arcos JA, Garcia HS, Hill CG. Continuous enzymatic esterification of glycerol with (poly)unsaturated fatty acids in a packed bed reactor. Biotechnol Bioeng. 2000;68(5):563-570.

Jakovetic SM, Lukovic ND, Boskovic-Vragolovic NM, Bezbradica DI, Picazo-Espinosa R, Knezevic-Jugovic ZD. Comparative study of batch and fluidized bed bioreactors for lipase-catalyzed ethyl cinnamate synthesis. Ind Eng Chem Research. 2013;52(47):16689-16697.

Sahoo S. Fluidized Bed Reactor: Design and Application for Abatement of Fluoride. Degree's Thesis, National Institute of Technology, Roukela, India, 2012.

Saponji? S, Kneževi?-Jugovi? ZD, Bezbradica DI, Zuza MG, Saied OA, Boskovi?-Vragolovi? N, Mijin DZ. Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: Batch and fluidized bed reactor study. Electron J Biotechnol. 2010;13(6): 1-15.

Li C, Sun J, Li T, Liu SQ, Huang D. Chemical and enzymatic synthesis of a library of 2-phenetyl esters and their sensory attributes. Food Chem. 2014;154:205-210.

Betiku E, Ajala SO. Modelling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogenous base catalyst: A case of artificial neural network vs response surface methodology. Ind Crops Prod. 2014;53:314-322.

Downloads

Published

30.12.2016

How to Cite

Ishak, N., Lajis, A. F. B., Mohamad, R., Ariff, A. B., Halim, M., & Wasoh, H. (2016). Kojic acid esters: Comparative review on its methods of synthesis. Journal of Biochemistry, Microbiology and Biotechnology, 4(2), 7–15. https://doi.org/10.54987/jobimb.v4i2.304

Issue

Section

Articles