Luminescent bacterial testing for monitoring hydrocarbon bioremediation – a review

Authors

  • Maryam Zahaba Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia.

DOI:

https://doi.org/10.54987/jobimb.v3i2.274

Keywords:

luminescent bacteria, toxicity assay, hydrocarbon, biodegradation, bioremediation

Abstract

Human activities in a large array of industrial and agricultural sectors produce chemical contaminants which are chiefly hydrocarbons of various types that are potentially toxic and carcinogenic to aquatic and terrestrial organisms. Globally, millions of tons of these pollutants are generated annually, and in some areas, they are released indiscriminately to the environment. In order to overcome this problem, microbiological decontamination or bioremediation has been suggested. Bioremediation has been argued to be an efficient, economic, and adaptable alternative to physicochemical remediation. However, to date, such claims of successful bioremediation are often not supported by evidence from toxicity studies. In this regard, luminescent bacteria have been employed in some hydrocarbon remediation experiments to denote reduction in toxicity. In this review, the utilization of luminescence bacteria as toxicity monitoring agent for hydrocarbon remediation is discussed.

References

Sabullah MK. Acetylcholinesterase from Osteochilus hasselti for the detection of insecticides and heavy metals. Universiti Putra Malaysia; 2011.

Verma N, Singh M. Biosensors for heavy metals. BioMetals. 2005 Apr;18(2):121–9.

Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MPA, Shamaan NA, et al. An inhibitive determination method for heavy metals using bromelain, a cysteine protease. Appl Biochem Biotechnol. 2008;144(3):283–91.

Baskaran G, Masdor NA, Syed MA, Shukor MY. An inhibitive enzyme assay to detect mercury and zinc using protease from Coriandrum sativum. Sci World J [Internet]. 2013;2013. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84886463804&partnerID=40&md5=56fe4ef11ba50ff5275953a2612962c1

Shukor Y, Baharom NA, Rahman FA, Abdullah MP, Shamaan NA, Syed MA. Development of a heavy metals enzymatic-based assay using papain. Anal Chim Acta. 2006;566(2):283–9.

Sabullah MK, Ahmad SA, Shukor MY, Syed MA, Shamaan NA. The evaluation of Periophtalmodon schlosseri as a source of acetylcholinesterase for the detection of insecticides. Bull Environ Sci Manag. 2013;1(1):20–4.

Halmi MIE, Jirangon H, Johari WLW, Abdul Rachman AR, Shukor MY, Syed MA. Comparison of Microtox and Xenoassay light as a near real time river monitoring assay for heavy metals. Sci World J. 2014;2014.

Fernández-alba AR, Guil MDH, Gema D, Chisti Y. Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Anal Chim Acta. 2002;451:195–202.

Widder E a. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science. 2010 May 7;328(5979):704–8.

Dunlap P V, Kita-tsukamoto K. Luminous Bacteria. Prokaryotes. 2006;2:863–92.

Nealson KH, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979 Dec;43(4):496–518.

Wood BJB, Zeeh K. Marine Animal Bioluminescence [Internet]. Science. 2012. p. 1–3. Available from: fishchannel.com

Lee HJ, Villaume J, Cullen DC, Kim BC, Gu MB. Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria. Biosens Bioelectron. 2003;18(5–6):571–7.

Popham DL, Stevens AM. Bacterial Quorum Sensing and Bioluminescence. 2005 p. 201–15.

Ren S, Frymier PD. Toxicity of metals and organic chemicals evaluated with bioluminescence assays. Chemosphere. 2005;58(5):543–50.

Michelini E, Cevenini L, Mezzanotte L, Roda A. Bioluminescence. Rich PB, Douillet C, editors. Methods Mol Biol. 2009;574(3):1–13.

Bulich AA, Isenberg DL. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans. 1981;20(1):29–34.

Girotti S, Ferri EN, Fumo MG, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta. 2008 Feb 4;608(1):2–29.

Gellert G, Stommel A, Trujillano AB. Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere. 1999;39(3):467–76.

Ulitzur S, Lahav T, Ulitzur N. A novel and sensitive test for rapid determination of water toxicity. Environ Toxicol. 2002;17(3):291–6.

Mariscal A, Peinado MT, Carnero-Varo M, Fernández-Crehuet J. Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi. Chemosphere. 2003;50(3):349–54.

Peinado MT, Mariscal A, Carnero-Varo M, Fernández-Crehuet J. Correlation of two bioluminescence and one fluorogenic bioassay for the detection of toxic chemicals. Ecotoxicol Environ Saf. 2002;53(1):170–7.

Hong Y, Chen Z, Zhang B, Zhai Q. Isolation of Photobacterium sp. LuB-1 and its application in rapid assays for chemical toxicants in water. Lett Appl Microbiol. 2010;51(3):308–12.

Dutka BJ, Kwan KK. Comparison of three microbial toxicity screening tests with the microtox test. Bull Environ Contam Toxicol. 1981 Jul;27–27(1):753–7.

Watanabe H, Hastings JW. Inhibition of bioluminescence in Photobacterium phosphoreum by sulfamethizole and its stimulation by thymine. Biochim Biophys Acta BBA - Bioenerg. 1990 Jun;1017(3):229–34.

Zahaba M, Halmi MIE, Ahmad SA, Shukor MY, Syed MA. Isolation and characterization of luminescent bacterium for sludge biodegradation. J Environ Biol. 2015;36(6):1255.

Wang S-J, Yan Z-G, Guo G-L, Lu G-L, Wang Q-H, Li F-S. Ecotoxicity assessment of aged petroleum sludge using a suite of effects-based end points in earthworm Eisenia fetida. Environ Monit Assess. 2010 Oct;169(1–4):417–28.

Knoke KL, Marwood TM, Cassidy MB, Lee H, Trevors JT, Liu D, et al. A comparison of five bioassays to monitor toxicity during bioremediation of pentachlorophenol-contaminated soil. Water Air Soil Pollut. 1999;110(1–2):157–69.

Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011 Jan;2011:941810.

Morelli IS, Del Panno MT, De Antoni GL, Painceira MT. Laboratory study on the bioremediation of petrochemical sludge-contaminated soil. Int Biodeterior Biodegrad. 2005 Jun;55(4):271–8.

Ahmad SA, Ahamad KNEK, Johari WLW, Halmi MIE, Shukor MY, Yusof MT. Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei. 2014;25(4):505–12.

Ali N, Dashti N, Salamah S, Al-Awadhi H, Sorkhoh N, Radwan S. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil. 2016.

Nelson YM, Scott SL. Biodegradability and toxicity of hydrocarbon leachate from land treatment units. In: Gavaskar AR, Chen ASC, editors. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, California: Battelle Press; 2004.

Al-Baldawi IA, Abdullah SRS, Anuar N, Suja F, Mushrifah I. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng. 2015;74:463–73.

Al-Mutairi N, Bufarsan A, Al-Rukaibi F. Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere. 2008;74(1):142–8.

Girotti S, Bolelli L, Roda A, Gentilomi G, Musiani M. Improved detection of toxic chemicals using bioluminescent bacteria. Anal Chim Acta. 2002;471:113–20.

Johnson BT. 1. microtox ® acute toxicity test. Small-Scale Freshw Toxic Investig. 2005;1:69–105.

Ren S, Frymier PD. Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge. Water Res. 2002 Oct;36(17):4406–14.

Choi K, Meier PG. Toxicity evaluation of metal plating wastewater employing the Microtox assay: a comparison with cladocerans and fish. Environ Toxicol. 2001 Jan;16(2):136–41.

Idris M, Abdullah SRS, Titah HS, Latif MT, Ayub R. Degradation of total petroleum hydrocarbon in phytoremediation using terrestrial plants. EnvironmentAsia. 2014;7(2):36–44.

Farré ML., García M-J., Tirapu L., Ginebreda A., Barceló D. Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays. Anal Chim Acta. 2001;427(2):181–9.

Halmi MIE, Kai IPR, Johari WLW, Shukor MY. Toxicity assessment of bioluminescent rapid bioassays (Vibrio fischeri) on selected DBPs. J Environ Microbiol Toxicol. 2014;2(2):47–52.

Wiedinmyer C, Yokelson RJ, Gullett BK. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic wastE. Environ Sci Technol. 2014;48(16):9523–30.

Auffret MD, Yergeau E, Labbé D, Fayolle-Guichard F, Greer CW. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl Microbiol Biotechnol. 2015;99(5):2419–30.

Boz DT, Yalçın HT, Çorbacı C, Uçar FB. Screening and molecular characterization of polycyclic aromatic hydrocarbons degrading yeasts. Turk J Biochem. 2015;40(2):105–10.

Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, et al. Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr. Y6. Appl Biochem Biotechnol. 2008;149(1):33–43.

Coulon F, Pelletier E, St Louis R, Gourhant L, Delille D. Degradation of petroleum hydrocarbons in two sub-antarctic soils: influence of an oleophilic fertilizer. Environ Toxicol Chem SETAC. 2004;23(8):1893–901.

Girotti S, Maiolini E, Bolelli L, Ferri E. Bioremediation of hydrocarbons contaminated waters and soils : monitoring by luminescent bacteria test. Int J Environ AAnalytical Chem. 2011;91(August 2011):900–9.

Xu Y, Lu M. Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater. 2010 Nov 15;183(1–3):395–401.

Simarro R, González N, Bautista LF, Molina MC. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol Ecol. 2013;83(2):438–49.

Downloads

Published

31.12.2015

How to Cite

Zahaba, M. (2015). Luminescent bacterial testing for monitoring hydrocarbon bioremediation – a review. Journal of Biochemistry, Microbiology and Biotechnology, 3(2), 13–20. https://doi.org/10.54987/jobimb.v3i2.274

Issue

Section

Articles