Toxicity, pollution and biodegradation of acrylamide – a mini review

Authors

  • N. Kusnin Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • Mohd Arif Syed Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • Siti Aqlima Ahmad Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.54987/jobimb.v3i2.273

Keywords:

acrylamide, polyacrylamide, toxicity, biodegradation, bioremediation

Abstract

Acrylamide is a monomer to polyacrylamide; a polymer with diverse application in basic research, industries and agriculture. The monomer is highly toxic while the polymeric form is slowly degraded to its monomeric form in the environment. In this mini review, the toxicity, uses, pollution and biodegradation of this important monomer are discussed. An important aspect of this review is to highlight the application of microorganisms as remediating agent for the removal of this compound from the environment.

References

DOE. Malaysia Environmental Quality Report 2014. Department of Environment, Ministry of Natural Resources and Environment, Malaysia; 2015.

Sabullah MK. Acetylcholinesterase from Osteochilus hasselti for the detection of insecticides and heavy metals. Universiti Putra Malaysia; 2011.

Sabullah MK, Ahmad SA, Shukor MY, Shamaan NA, Khalid A, Gansau AJ, et al. Acetylcholinesterase from Puntius javanicus for the detection of carbamates and organophosphates. Journal of Chemical and Pharmaceutical Sciences. 2015;8(2):348–53.

Shukor Y, Baharom NA, Rahman FA, Abdullah MP, Shamaan NA, Syed MA. Development of a heavy metals enzymatic-based assay using papain. Analytica Chimica Acta. 2006;566(2):283–9.

Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MPA, Shamaan NA, et al. An inhibitive determination method for heavy metals using bromelain, a cysteine protease. Applied Biochemistry and Biotechnology. 2008;144(3):283–91.

Syed MA, Sim HK, Khalid A, Shukor MY. A simple method to screen for azo-dye-degrading bacteria. Journal of Environmental Biology. 2009;30(1):89–92.

Ahmad SA, Ahamad KNEK, Johari WLW, Halmi MIE, Shukor MY, Yusof MT. Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei. 2014;25(4):505–12.

Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, et al. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: A review. Environmental Science and Pollution Research. 2015;22(9):6390–406.

Stadler RH, Goldmann T. Chapter 20 Acrylamide, Chloropropanols and Chloropropanol Esters, Furan. In: Yolanda Picó, editor. Comprehensive Analytical Chemistry [Internet]. Elsevier; 2008 [cited 2012 Dec 30]. p. 705–32. Available from: http://www.sciencedirect.com/science/article/pii/S0166526X08000202

Smith EA, Prues SL, Oehme FW. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: Temperature, light, and pH. Ecotoxicology and Environmental Safety. 1996;35(2):121–35.

Raj J, Prasad S, Sharma NN, Bhalla TC. Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34. Folia Microbiologica. 2010;55(5):442–6.

Wampler DA, Ensign SA. Photoheterotrophic Metabolism of Acrylamide by a Newly Isolated Strain of Rhodopseudomonas palustris. Applied and Environmental Microbiology. 2005 Oct;71(10):5850–7.

Shukor A, Yunus M, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, et al. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. Journal of Environmental Biology. 2009;30(1):107–12.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. Journal of Environmental Biology. 2009;30(1):57–64.

Shanker R, Ramakrishna C, Seth PK. Microbial degradation of acrylamide monomer. Arch Microbiol. 1990;154(2):192–8.

Pavlyk BI. Biocompatible hydrogel [Internet]. 5798096, 1998 [cited 2013 Jan 1]. Available from: http://www.google.com.my/patents?id=IAMnAAAAEBAJ

Green VS, Stott DE, Norton LD, Graveel JG. Polyacrylamide Molecular Weight and Charge Effects on Infiltration under Simulated Rainfall. Soil Science Society of America Journal. 2000 Sep 1;64(5):1786–91.

Seybold CA. Polyacrylamide review: Soil conditioning and environmental fate. Communications in Soil Science and Plant Analysis. 1994;25(11–12):2171–85.

Lentz RD, Shainberg I, Sojka RE, Carter DL. Preventing irrigation furrow erosion with small applications of polymers. Soil Science Society of America Journal. 1992;56:1926–32.

Bjorneberg DL, Aase JK. Multiple polyacrylamide applications for controlling sprinkler irrigation runoff and erosion. Applied engineering in agriculture. 2000;16(5):501–4.

Touzé S, Guerin V, Guezennec A-G, Binet S, Togola A. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use—sand and gravel quarry case study. Environmental Science and Pollution Research. 2015;22(9):6423–30.

Wang C-C, Lee C-M. Isolation of the acrylamide denitrifying bacteria from a wastewater treatment system manufactured with polyacrylonitrile fiber. Current Microbiology. 2007;55(4):339–43.

Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor MS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca strain Saw-5 in soils from Sarawak. Agrivita. 2016;38(1):1–13.

Syed MA, Ahmad SA, Kusnin N, Shukor MYA. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR. Y27. African Journal of Biotechnology. 2014;11(2):329–336.

Brown L, Rhead MM, Bancroft KCC, Allen N. Model studies of the degradation of acrylamide monomer. Water Research. 1980;14(7):775–8.

Croll BT, Arkell GM, Hodge RPJ. Residues of acrylamide in water. Water Research. 1974;8(11):989–93.

Wakaizumi M, Yamamoto H, Fujimoto N, Ozeki K. Acrylamide degradation by filamentous fungi used in food and beverage industries. Journal of Bioscience and Bioengineering. 2009;108(5):391–3.

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J Agric Food Chem. 2002;50(17):4998–5006.

Bachmann M, Myers JE, Bezuidenhout BN. Acrylamide monomer and peripheral neuropathy in chemical workers. American Journal of Industrial Medicine. 1992 Jan 1;21(2):217–22.

Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001 Aug;27(4):219–26.

Rogacheva SM, Ignatov OV. The respiratory activity of Rhodococcus rhodochrous M8 cells producing nitrile-hydrolyzing enzymes. Applied Biochemistry and Microbiology. 2001;37(3):282–6.

van Dijk-Looijaard A., van Genderen J. Levels of exposure from drinking water. Food and Chemical Toxicology. 2000 Apr 1;38, Supplement 1(0):S37–42.

Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. Journal of Environmental Biology. 2009;30(1):107–12.

Prabu CS, Thatheyus AJ. Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. International Biodeterioration and Biodegradation. 2007;60(2):69–73.

Smith EA, Prues SL, Oehme FW. Environmental Degradation of Polyacrylamides. 1. Effects of Artificial Environmental Conditions: Temperature, Light, and pH. Ecotoxicology and Environmental Safety. 1996 Nov;35(2):121–35.

Caulfield MJ, Hao X, Qiao GG, Solomon DH. Degradation on polyacrylamides. Part I. Linear polyacrylamide. Polymer. 2003 Mar;44(5):1331–7.

Osuji LC, Onojake CM. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria. Journal of Environmental Management. 2006;79(2):133–9.

Igisu H, Goto I, Kawamura Y, Kato M, Izumi K. Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry. 1975 Jun;38(6):581–4.

Eriksson S, Karlsson P. Some Analytical Factors Affecting Measured Levels of Acrylamide in Food Products. In: Friedman M, Mottram D, editors. Chemistry and Safety of Acrylamide in Food [Internet]. Springer US; 2005 [cited 2012 Dec 30]. p. 285–91. (Advances in Experimental Medicine and Biology). Available from: http://link.springer.com/chapter/10.1007/0-387-24980-X_21

Goffeng LO, Kjuus H, Heier MS, Alvestrand M, Ulvestad B, Skaug V. Colour vision and light sensitivity in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents. NeuroToxicology. 2008 Jan;29(1):31–9.

Shipp A, Lawrence G, Gentry R, McDonald T, Bartow H, Bounds J, et al. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol. 2006;36(6–7):481–608.

Cihák R, Vontorková M. Cytogenetic effects of acrylamide in the bone marrow of mice. Mutat Res. 1988;209(1–2):91–4.

Kligerman AD, Atwater AL, Bryant MF, Erexson GL, Kwanyuen P, Dearfield KL. Cytogenetic studies of ethyl acrylate using C57BL/6 mice. Mutagenesis. 1991 Mar;6(2):137–41.

Backer LC, Dearfield KL, Erexson GL, Campbell JA, Westbrook-Collins B, Allen JW. The effects of acrylamide on mouse germ-line and somatic cell chromosomes. Environ Mol Mutagen. 1989;13(3):218–26.

Miller MJ, Carter DE, Sipes IG. Pharmacokinetics of acrylamide in Fisher-334 rats. Toxicology and Applied Pharmacology. 1982 Mar 30;63(1):36–44.

Weideborg M, Källqvist T, Ødegård KE, Sverdrup LE, Vik EA. Environmental risk assessment of acrylamide and methylolacrylamide from a grouting agent used in the tunnel construction of romeriksporten, Norway. Water Research. 2001;35(11):2645–52.

Nawaz MS, Billedeau SM, Cerniglia CE. Influence of selected physical parameters on the biodegradation of acrylamide by immobilized cells of Rhodococcus sp. Biodegradation. 1998;9(5):381–7.

Abdullah MA, Afzaal M, Ismail Z, Ahmad A, Nazir MS, Bhat AH. Comparative study on structural modification of Ceiba pentandra for oil sorption and palm oil mill effluent treatment. Desalination and Water Treatment. 2015;54(11):3044–53.

Liew CY, Husaini A, Hussain H, Muid S, Liew KC, Roslan HA. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World Journal of Microbiology and Biotechnology. 2011;27(6):1457–68.

Zakaria ZA, Ahmad WA, Zakaria Z, Razali F, Karim NA, Sum MM, et al. Bacterial reduction of Cr(VI) at technical scale - The Malaysian experience. Applied Biochemistry and Biotechnology. 2012;167(6):1641–52.

Parvizpour S, Hamid THTA, Huyop F. Molecular identification and biodegradation of 3-chloropropionic acid (3CP) by filamentous fungi-Mucor and Trichoderma species isolated from UTM agricultural land. Malaysian Journal of Microbiology. 2013;9(1):120–4.

Sing NN, Zulkharnain A, Roslan HA, Assim Z, Husaini A. Bioremediation of PCP by Trichoderma and Cunninghamella strains isolated from sawdust. Brazilian Archives of Biology and Technology. 2014;57(6):811–20.

Al-Baldawi IA, Abdullah SRS, Anuar N, Suja F, Mushrifah I. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecological Engineering. 2015;74:463–73.

Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Mukhlisin M, et al. Biodegradation of diesel by bacteria isolated from Scirpus mucronatus rhizosphere in diesel-contaminated sand. Advanced Science Letters. 2015;21(2):140–3.

Wan AWH, Chyan JB, Zakaria ZA, Ahmad WA. Sugarcane bagasse as nutrient and support material for Cr(VI)-reducing biofilm. International Biodeterioration and Biodegradation. 2015;102:3–10.

Zargoun LM, Mohd Z, Shahir S. Isolation and characterization polyhydrobutyrate (PHB) producing bacteria from waste cooking oil using pomegranate molasses as carbon source. Jurnal Teknologi. 2015;77(31):85–93.

Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MYA, Syed MA. Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World Journal of Microbiology and Biotechnology. 2012;28(1):347–52.

Sun J, Zhang L, Rao B, Han Y, Chu J, Zhu J, et al. Enhanced acetoin production by serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnology and Bioprocess Engineering. 2012;17(3):598–605.

Thanyacharoen U, Tani A, Charoenpanich J. Isolation and characterization of Kluyvera georgiana strain with the potential for acrylamide biodegradation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2012;47(11):1491–9.

Ku Ahamad KE, Halmi MIE, Shukor MY, Wasoh MH, Abdul Rachman AR, Sabullah MK, et al. Characterization of a diesel-degrading strain isolated from a local hydrocarbon-contaminated site. Journal of Environmental Bioremediation and Toxicology. 2013;1(1):1–8.

Motiwalla MJ., Punyarthi PP., Mehta MK., D’Souza JS., Kelkar-Mane V. Studies on degradation efficiency of polycaprolactone by a naturally-occurring bacterium. Journal of Environmental Biology. 2013;34(1):43–9.

Nallapan Maniyam M., Sjahrir F., Ibrahim AL., Cass AEG. Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia (Poland). 2013;68(2):177–85.

Shukor MY, Dahalan FA, Jusoh AZ, Shamaan NA, Syed MA. Characterization of diesel-degrading enzymes from Acinetobacter sp. strain DRY12. Bioremediation Science and Technology Research. 2013;1(1):15–8.

Agrawal S, Tipre D, Patel B, Dave S. Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway. Process Biochemistry. 2014;49(1):110–9.

Charoenpanich J, Tani A. Proteome analysis of acrylamide-induced proteins in a novel acrylamide-degrader Enterobacter aerogenes by 2D electrophoresis and MALDI-TOF-MS. Chiang Mai University Journal of Natural Sciences. 2014;13(1):11–22.

Rebello S, Asok AK, Mundayoor S, Jisha MS. Surfactants: Toxicity, remediation and green surfactants. Environmental Chemistry Letters. 2014;12(2):275–87.

AbdEl-Mongy MA, Shukor MS, Hussein S, Ling APK, Shamaan NA, Shukor MY. Isolation and characterization of a molybdenum-reducing, phenol- and catechol-degrading Pseudomonas putida strain amr-12 in soils from Egypt. Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry. 2015;16(4):353–69.

Heilbuth NM, Linardi VR, Monteiro AS, da RRA, Mimim LA, Santos VL. Estimation of kinetic parameters of phenol degradation by bacteria isolated from activated sludge using a genetic algorithm. Journal of Chemical Technology and Biotechnology. 2015;90(11):2066–75.

Khayat ME, Rahman MFA, Shukor MS, Ahmad SA, Shamaan NA, Shukor MY. Characterization of a molybdenum-reducing Bacillus sp. strain khayat with the ability to grow on SDS and diesel. Rendiconti Lincei. 2016;Article in Press.

Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. Journal of Environmental Sciences. 2011;23(3):396–403.

Thanyacharoen U, Tani A, Charoenpanich J. Isolation and characterization of Kluyvera georgiana strain with the potential for acrylamide biodegradation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2012;47(11):1491–9.

Charoenpanich J, Tani A. Proteome analysis of acrylamide-induced proteins in a novel acrylamide-degrader Enterobacter aerogenes by 2D electrophoresis and MALDI-TOF-MS. Chiang Mai University Journal of Natural Sciences. 2014;13(1):11–22.

Liu Z-H, Cao Y-M, Zhou Q-W, Guo K, Ge F, Hou J-Y, et al. Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969. Biodegradation. 2013;24(6):855–64.

Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide. European Journal of Biochemistry. 2004;271(8):1580–90.

Lakshmikandan M, Sivaraman K, Raja SE, Vasanthakumar P, Rajesh RP, Sowparthani K, et al. Biodegradation of acrylamide by acrylamidase from Stenotrophomonas acidaminiphila MSU12 and analysis of degradation products by MALDI-TOF and HPLC. International Biodeterioration and Biodegradation. 2014;94:214–21.

Nawaz MS, Chapatwala KD, Wolfram JH. Degradation of acetonitrile by Pseudomonas putida. Applied and Environmental Microbiology. 1989;55(9):2267–74.

Chandrashekar V, Chandrashekar C, Shivakumar R, Bhattacharya S, Das A, Gouda B, et al. Assessment of acrylamide degradation potential of Pseudomonas aeruginosa BAC-6 isolated from industrial effluent. Applied Biochemistry and Biotechnology. 2014;173(5):1135–44.

Alt J, Krisch K, Hirsch P. Isolation of an inducible amidase from Pseudomonas acidovorans AEI. Journal of General Microbiology. 1975;87(2):260–72.

Postec A, Pignet P, Cueff-Gauchard V, Schmitt A, Querellou J, Godfroy A. Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Research in Microbiology. 2005;156(1):82–7.

Ciskanik LM, Wilczek JM, Fallon RD. Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Applied and Environmental Microbiology. 1995;61(3):998–1003.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. Journal of Environmental Bioremediation and Toxicology. 2014;2(1):1–5.

Syed MA, Ahmad SA, Kusnin N, Shukor MYA. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27. African Journal of Biotechnology. 2012;11(2):329–36.

Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. Journal of Environmental Sciences. 2011;23(3):396–403.

Rahim MBH, Syed MA, Shukor MY. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP. Journal of Basic Microbiology. 2012;52(5):573–81.

Mansur R, Gusmanizar N, Dahalan FA, Masdor NA, Ahmad SA, Shukor MS, et al. Isolation and characterization of a molybdenum-reducing and amide-degrading Burkholderia cepacia strain neni-11 in soils from west Sumatera, Indonesia. IIOAB. 2016;7(1):28–40.

Wang C-C, Lee C-M. Denitrification with acrylamide by pure culture of bacteria isolated from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system. Chemosphere. 2001;44(5):1047–53.

Downloads

Published

31.12.2015

How to Cite

Kusnin, N., Syed, M. A., & Ahmad, S. A. (2015). Toxicity, pollution and biodegradation of acrylamide – a mini review. Journal of Biochemistry, Microbiology and Biotechnology, 3(2), 6–12. https://doi.org/10.54987/jobimb.v3i2.273

Issue

Section

Articles