Metabolite Profiling and Antioxidant Activity of Borassus aethiopum Hypocotyl Fraction

Authors

  • Nafisa Isiyaka Rabiu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Amina Abdulmalik Juda Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Aminu Jibril Sufyan Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Zainab Bello Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Aisha Abubakar Jinjiri Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Husna Usman Turadu Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Fatima AbdulGaffar Nasir Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Amina Lawal Garba Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Haruna Bala Tsoho Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.
  • Innocent Ojeba Musa Department of Biochemistry, School of Science and Information Technology, Skyline University Nigeria, No. 2 Zaria Road, P.M.B 3076, Kano, Kano State, Nigeria.
  • Abba Babandi Medical Biochemistry Unit, Faculty of Basic Medical Sciences, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, PMB 3011 Gwarzo Road Kano, Nigeria.

DOI:

https://doi.org/10.54987/jobimb.v13i1.1159

Keywords:

Borassus aethiopum, Antioxidant activity, Hypocotyl extract, Phenolic compounds, Ultrasound-assisted extraction

Abstract

Oxidative stress has been established among the key causes of both metabolic and cellular dysfunctions, thus developing an efficient natural antioxidant is highly required. This work profile the bioactive and examines the antioxidant capacity of the hypocotyl fractions of Borassus aethiopum (the palm tree) through in vitro and in-vivo assays. The phytochemical tests revealed a high content of total phenolic (875 ± 34.5 mg/g) than flavonoids (15.2 ± 0.57 mg/g) in the hypocotyl of B. aethiopum. A variable antioxidant activity was established by the various solvent fractions, with aqueous fraction having the highest activity in vitro as demonstrated its lowest IC50 value against DPPH radical scavenging activity (23.8 ± 0.5 µg/mL) and total antioxidant power (10.6 ± 0.2 µg/mL). Similarly, FTIR spectra revealed dominant O–H, C–H, C=O, and C–N functional groups characteristic of phenols, carboxylic acids, alkanes, and amines, confirming the presence of redox active chemical classes. GC–MS analysis identified several antioxidant associated metabolites, including thymol acetate, tyrosol, 3 nitrochalcone, retinal, α ionone derivatives, 3 aminosalicylic acid, hydroquinone derivatives, diosgenin, and lupeol. The in vivo assessment in diabetic rat model demonstrated biochemical modulation consistent with antioxidant activity. Extract treated groups showed reduced malondialdehyde levels (e.g., 0.54 ± 0.06 nmol/mg at 250 mg/kg) relative to diabetic controls (0.87 ± 0.16 nmol/mg), alongside increases in superoxide dismutase (0.55 ± 0.04 U/mL at 500 mg/kg) and dose dependent alterations in catalase activity. Together, these findings demonstrate that B. aethiopum hypocotyl possesses a robust antioxidant signature driven by phenolic abundance, redox active metabolites, and modulation of endogenous antioxidant enzymes, supporting its potential as a natural source of antioxidant compounds.

References

Chen X, Xie N, Feng L, Huang Y, Wu Y, Zhu H, et al. Oxidative stress in diabetes mellitus and its complications: from pathophysiology to therapeutic strategies. Chin Med J (Engl). 2025;138(1):15–27. https://doi.org/10.1097/CM9.0000000000003230

Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: an assessment of the benefit profile. Heliyon. 2023;9(1):e12698. https://doi.org/10.1016/j.heliyon.2022.e12698

Bright ER, Solomon AO, Oluremi OI, Olugbenga AE. Bioactivity studies of Borassus aethiopum (African palmyra palm) kernel extracts and oil. Int J Curr Sci. 2025;15(1):255–63.

Ranjha MMAN, Irfan S, Lorenzo JM, Shafique B, Kanwal R, Pateiro M, et al. Sonication, a potential technique for extraction of phytoconstituents: a systematic review. Processes. 2021;9(8):1405. https://doi.org/10.3390/pr9081406

Ordoñez JL, Callejón RM, Morales ML, García-Parrilla MC. A survey of biogenic amines in vinegars. Food Chem. 2013;141(3):2713–9. https://doi.org/10.1016/j.foodchem.2013.05.087

Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem. 2003;51(3):609–14. https://doi.org/10.1021/jf020782a

Li PX, Hu DH, Guo MY, Sun YF, Liu ML, Huang Y. Comparative study on DPPH free radical scavenging activity of 25 kinds of traditional Chinese medicinal plants. Eur J Med Plants. 2019;28(2):1–6. https://doi.org/10.9734/ejmp/2019/v28i230129

Shangari N, O’Brien PJ. Catalase activity assays. Curr Protoc Toxicol. 2006;27(1):7. https://doi.org/10.1002/0471140856.tx0707s27

Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta. 2000;293(1–2):157–66. https://doi.org/10.1016/S0009-8981(99)00246-6

Walter MF, Jacob RF, Jeffers B, Ghadanfar MM, Preston GM, Buch J, et al. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol. 2004;44(10):1996–2002. https://doi.org/10.1016/j.jacc.2004.08.029

Anokwuru CP, Anyasor GN, Ajibaye O, Fakoya O, Okebugwu P. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nat Sci. 2011;9(7):53–61.

Sarkodie J, Squire S, Kretchy I, Bekoe E, Domozoro C, Ahiagbe K, Adjei E, Edoh D, Amponsah I, Sakyiama M, Lamptey V, Affedzi-Obresi S, Duncan J, Debrah P, N’Guessan B, Nyarko A. Borassus aethiopum: a potential medicinal source of antioxidants, anti-inflammatory and antimicrobial agents. Arch Med. 2015;1(1):3. https://doi.org/10.21767/2472-0151.10003

Dzigbor A, Neglo D, Dzah CS, Sraha R. Total phenolic content, phytochemical screening, antioxidant and antimicrobial activities of Borassus flabellifer and Borassus aethiopum fruits. Food Chem Adv. 2025;7:100937. https://doi.org/10.1016/j.focha.2025.100937

Adams M, Eze E. Borassus aethiopum (Mart.) ethanol fruit extract reverses alloxan-treatment alterations in experimental animals. Med J Nutr Metab. 2021;15(4):429–45. https://doi.org/10.3233/mnm-211589

Titus SD, Christian N, Francis A, Samuel KB, Ishaya SG, Christopher MU, et al. Chemical constituents of Borassus aethiopum methanol leaf and fruit extract. Int J Res Publ Rev. 2024;1(3):1–9. https://doi.org/10.55248/gengpi.5.0924.2641

Abubakar S, Etim VA, Usman AB, Isyaku A, Sabo BB. Nutraceutical potential of two wild edible fruits growing in sub-Saharan region of Nigeria. Am J Environ Sci Eng. 2017;1(2):52–8.

Peprah M, Apprey C, Larbie C, Asamoah-Boakye O. Phytochemical constituents of flour and composite bread from African palmyra (Borassus aethiopum) fruit from Ghana. Afr J Food Sci Technol. 2018;9(3):47–53. https://doi.org/10.9734/ejmp/2018/40502

Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, et al. Extraction and characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, and antimicrobial properties, and potential use in human nutrition. Front Nutr. 2023;10:1125106. https://doi.org/10.3389/fnut.2023.1125106

Wagner C, El Omari M, König GM. Biohalogenation: nature’s way to synthesize halogenated metabolites. J Nat Prod. 2009;72(3):540–53. https://doi.org/10.1021/np800651m

Rahman MA, Ndiaye M, Weclawski B, Farrell P. Palmyra palm shell (Borassus flabellifer) properties part 3: insights into its morphological, chemical, and thermal properties after alkali treatment. Eng Rep. 2025;7(4):e70103. https://doi.org/10.22541/au.173557633.34492875/v1

Saravanan V, Davoodbasha M, Rajesh A, Nooruddin T, Lee SY, Kim JW. Extraction and characterization of chitosan from shell of Borassus flabellifer and their antibacterial and antioxidant applications. Int J Biol Macromol. 2023;253:126592. https://doi.org/10.1016/j.ijbiomac.2023.126592

Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A triterpenoid lupeol as an antioxidant and anti-neuroinflammatory agent: impacts on oxidative stress in Alzheimer’s disease. Nutrients. 2023;15(15):3059. https://doi.org/10.3390/nu15153059

Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, et al. Diosgenin: an updated pharmacological review and therapeutic perspectives. Oxid Med Cell Longev. 2022;2022:1035441. https://doi.org/10.1155/2022/1035441

Miranda M, Romero FJ. Antioxidants and retinal diseases. Antioxidants (Basel). 2019;8(12):604. https://doi.org/10.3390/antiox8120604

Giner RM, Ríos JL, Máñez S. Antioxidant activity of natural hydroquinones. Antioxidants (Basel). 2022;11(2):334. https://doi.org/10.3390/antiox11020343

Lahsasni SA, Al Korbi FH, Aljaber NAA. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcone analogues. Chem Cent J. 2014;8:32. https://doi.org/10.1186/1752-153X-8-32

Verma S, Sagar N, Vats P, Shukla KN, Abbas M, Banerjee M. Antioxidant enzyme levels as markers for type 2 diabetes mellitus. Int J Bioassays. 2013;2(4):685–90.

Ngaski AA. Correlation of antioxidant enzymes activity with fasting blood glucose in diabetic patients in Sokoto, Nigeria. J Adv Med Med Res. 2018;25(12):1–6. https://doi.org/10.9734/jammr/2018/38627

Vinayagam R, Xiao J, Xu B. An insight into anti-diabetic properties of dietary phytochemicals. Phytochem Rev. 2017;16(3):535–53. https://doi.org/10.1007/s11101-017-9496-2

Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential benefits of antioxidant phytochemicals in type 2 diabetes. Molecules. 2023;28(9):4122. https://doi.org/10.3390/molecules28207209

Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, et al. Role of natural phenolics in hepatoprotection: a mechanistic review and analysis of regulatory network of associated genes. Front Pharmacol. 2019;10:509. https://doi.org/10.3389/fphar.2019.00509

de Carvalho e Martins MC, da Silva Santos Oliveira AS, da Silva LAA, Primo MGS, de Carvalho Lira VB. Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In: Patel VB, Preedy VR, editors. Biomarkers in Nutrition. Cham: Springer; 2022. p. 1–25. https://doi.org/10.1007/978-3-030-81304-8_49-1

Promyos N, Phienluphon PP, Wechjakwen N, Lainampetch J, Prangthip P, Kwanbunjan K. Inverse correlation of superoxide dismutase and catalase with type 2 diabetes among rural Thais. Nutrients. 2023;15(7):1720. https://doi.org/10.3390/nu15092071

Shalash M, Badra M, Imbaby S, ElBanna E. Malondialdehyde in type 2 diabetics and association with cardiovascular risk factors. J Med Res Inst. 2020;41(2):21–30. https://doi.org/10.21608/jmalexu.2020.147116

Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol. 2012;64(4):315–9. https://doi.org/10.1016/j.etp.2010.09.004

Shabalala SC, Johnson R, Basson AK, Ziqubu K, Hlengwa N, Mthembu SXH, et al. Detrimental effects of lipid peroxidation in type 2 diabetes: exploring the neutralizing influence of antioxidants. Antioxidants (Basel). 2022;11(12):2419. https://doi.org/10.3390/antiox11102071

Downloads

Published

31.07.2025

How to Cite

Rabiu, N. I., Juda, A. A., Sufyan, A. J. ., Musa, Z. B. ., Jinjiri, A. A. ., Turadu, H. U. ., Nasir, F. A. ., Garba, A. L. ., Tsoho, H. B. ., Musa, I. O. ., Babandi, A., & Yakasai, H. M. . (2025). Metabolite Profiling and Antioxidant Activity of Borassus aethiopum Hypocotyl Fraction. Journal of Biochemistry, Microbiology and Biotechnology, 13(1), 155–162. https://doi.org/10.54987/jobimb.v13i1.1159

Issue

Section

Articles