Inhibitory Effects of Oil Palm Leaf Extract on Osteoclastogenesis in RAW 264.7 Macrophages

Authors

  • Parastoo Safa Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Patimah Ismail Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Sabariah Md Noor Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Nizar Abd Manan Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/jobimb.v12i2.1014

Keywords:

Oil palm leaves, Osteoporosis, Osteoclastogenesis, Antioxidant activity, Cytotoxicity

Abstract

Osteoporosis is a bone disorder caused by an imbalance in the bone remodelling process, specifically between osteoblastogenesis and osteoclastogenesis, and is associated with increased oxidative stress. This study aims to investigate the antioxidant activity of oil palm leaf extracts (OPLEs) and their effects on osteoclastogenesis in murine macrophages (RAW 264.7), comparing the results with those of vitamin C (VC). Methanol extract of oil palm leaves (MEOPL) demonstrated the highest total phenolic content (TPC) at 284.26 mg GAE/g dry weight. The antioxidant activity, assessed via DPPH scavenging and FRAP assays, showed that MEOPL had a DPPH inhibition rate of 89.41% and a FRAP value of 105.67%. In cytotoxicity assays, MEOPL-treated cells exhibited significantly higher viability compared to VC-treated cells, with viability percentages exceeding 60% at concentrations up to 0.625 mg/mL. MEOPL also significantly reduced osteoclastogenesis, as indicated by a dose-dependent decrease in TRAP-positive multinucleated cells and a notable reduction in RANKL gene expression. These findings suggest that MEOPL possesses superior anti-osteoclastogenic properties compared to VC and holds promise as a potential therapeutic agent for the prevention and treatment of osteoporosis. However, as this study utilised an in vitro model, the direct translation of these results to clinical scenarios is limited, and further in vivo studies are necessary to confirm the clinical relevance of MEOPL.

References

Eun SY, Cheon YH, Park GD, Chung CH, Lee CH, Kim JY, et al. Anti-osteoporosis effects of the Eleutherococcus senticosus, Achyranthes japonica, and Atractylodes japonica mixed extract fermented with nuruk. Nutrients. 2021;13:3904.

Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 2020;60:826-843.

Xutian S, Zhang J, Louise W. New exploration and understanding of traditional Chinese medicine. Am. J. Chin. Med. 2009;37:411-426.

Lim DW, Kim JG, Lee Y, Cha SH, Kim YT. Preventive effects of Eleutherococcus senticosus bark extract in OVX-induced osteoporosis in rats. Molecules. 2013;18:7998-8008.

Cheon YH, Baek JM, Park SH, Ahn SJ, Lee MS, Oh J, et al. Stauntonia hexaphylla (Lardizabalaceae) leaf methanol extract inhibits osteoclastogenesis and bone resorption activity via proteasome-mediated degradation of c-Fos protein and suppression of NFATc1 expression. BMC Complement. Altern. Med. 2015;15:1-9.

Rizzello CG, Coda R, Sánchez Macías D, Pinto D, Marzani B, Filannino P, et al. Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp. Microb. Cell Fact. 2013;12:1-14.

Lei V, Amoa-Awua WKA, Brimer L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 1999;53:169-184.

Parvez S, Malik KA, Ah Kang S, Kim HY. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006;100:1171-1185.

Choi YE, Yang JM, Cho JH. Benincasa hispida extract promotes proliferation, differentiation, and mineralization of MC3T3-E1 preosteoblasts and inhibits the differentiation of RAW 246.7 osteoclast precursors. Appl. Sci. 2022;12:8849.

Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011;17:1231-1234.

Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011;17:1235-1241.

Fatima H, Shahid M, Pruitt C, Pung MA, Mills PJ, Riaz M, et al. Chemical fingerprinting, antioxidant, and anti-inflammatory potential of hydroethanolic extract of Trigonella foenum-graecum. Antioxidants (Basel). 2022;11:364.

Sidiq LO, Segun PA, Ogbole OO. Total phenolic contents and antioxidant activity of nine medicinal plants used in Nigerian traditional medicine. Trop. J. Nat. Prod. Res. 2018;2:438-441.

Mondal A, Maity TK, Bishayee A. Analgesic and anti-inflammatory activities of quercetin-3-methoxy-4?-glucosyl-7-glucoside isolated from Indian medicinal plant Melothria heterophylla. Medicines. 2019;6:59.

Rajavel V, Abdul Sattar MZ, Abdulla MA, Kassim NM, Abdullah NA. Chronic administration of oil palm (Elaeis guineensis) leaves extract attenuates hyperglycemic-induced oxidative stress and improves renal histopathology and function in experimental diabetes. Evid. Based Complement. Alternat. Med. 2012;1-14.

Varatharajan R, Abdul Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA. Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: A duration-dependent outcome. BMC Complement. Altern. Med. 2013;13:1-13.

Jaffri JM, Mohamed S, Ahmad IN, Mustapha NM, Manap YA, Rohimi N. Effects of catechin-rich oil palm leaf extract on normal and hypertensive rats' kidney and liver. Food Chem. 2011;128:433-441.

Yusof NZ, Abd Gani SS, Siddiqui Y, Mokhtar NFM, Hasan ZAA. Potential uses of oil palm (Elaeis guineensis) leaf extract in topical application. J. Oil Palm Res. 2016;28:520-530.

Waterhouse AL. Determination of total phenolics by Folin-Ciocalteu colorimetry. In: Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc.; 2002. p. I1.1.1-I1.1.8.

Muzolf-Panek M, Stuper-Szablewska K. Comprehensive study on the antioxidant capacity and phenolic profiles of black seed and other spices and herbs: Effect of solvent and time of extraction. J. Food Meas. Charact. 2021;15:4561-4574.

Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al. Separation and identification of bioactive peptides from stem of Tinospora cordifolia (Willd.) Miers. PLoS One. 2018;13:e0196536. Epub ahead of print 1 March 2018.

Benzie IFF, Devaki M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations, and applications. Crit. Rev. Food Sci. Nutr. 2018;58:1-11.

Liu Y, Kim S, Kim YJ, Perumalsamy H, Lee S, Hwang E, et al. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-?B and JAK/STAT pathways in RAW 264.7 macrophages. Int. J. Nanomedicine. 2019;14:2945-2959.

Itzstein C, Van'T Hof RJ. Osteoclast formation in mouse co-cultures. Methods Mol. Biol. 2012;816:177-186.

Kim JH, Kim EY, Lee B, Min JH, Song DU, Lim JM, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int. J. Mol. Med. 2016;37:649-658.

Phromnoi K, Suttajit M, Saenjum C, Limtrakul P. Inhibitory effect of a rosmarinic acid-enriched fraction prepared from Nga-Mon (Perilla frutescens) seed meal on osteoclastogenesis through the RANK signaling pathway. Antioxidants (Basel). 2021;10:307.

Hou T, Zhang L, Yang X. Ferulic acid, a natural polyphenol, protects against osteoporosis by activating SIRT1 and NF-?B in neonatal rats with glucocorticoid-induced osteoporosis. Biomed. Pharmacother. 2019;120:109205.

Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: Novel preventive and therapeutic approaches. Antioxidants (Basel). 2023;12:373.

Jia Y, Jiang J, Lu X, Zhang T, Zhao K, Han W, et al. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. J. Cell. Physiol. 2019;234:7498-7509.

Lee SH, Kim JK, Jang HD. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int. J. Mol. Sci. 2014;15:10605-10621.

Satué M, del Mar Arriero M, Monjo M, Ramis JM. Quercitrin and taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol. 2013;86:1476-1486.

Yan L, Lu L, Hu F, Shetti D, Wei K. Piceatannol attenuates RANKL-induced osteoclast differentiation and bone resorption by suppressing MAPK, NF-?B and AKT signalling pathways and promotes Caspase3-mediated apoptosis of mature osteoclasts. R. Soc. Open Sci. 2019;6:190423. Epub ahead of print 1 June 2019.

Azizul NH, Hapidin H, Abdullah H, Azlan M, Ahmad A, Soelaiman IN. Potential effects of polyphenols on osteoblast and osteoclast culture. Biomed. Res. Ther. 2023;10:5476-5490.

Brondani JE, Comim FV, Flores LM, Martini LA, Premaor MO. Fruit and vegetable intake and bones: A systematic review and meta-analysis. PLoS One. 2019;14:e0217223.

Kim CJ, Shin SH, Kim BJ, Kim CH, Kim JH, Kang HM, et al. The effects of kaempferol-inhibited autophagy on osteoclast formation. Int. J. Mol. Sci. 2018;19:125.

Ami? D, Davidovi?-Ami? D, Beslo D, Rastija V, Luci? B, Trinajsti? N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem. 2007;14:827-845.

Galleano M, Calabro V, Prince PD, Litterio MC, Piotrkowski B, Vazquez-Prieto MA, et al. Flavonoids and metabolic syndrome. Ann. N. Y. Acad. Sci. 2012;1259:87-94.

Bitto A, Polito F, Squadrito F, Marini H, D'Anna R, Irrera N, et al. Genistein aglycone: A dual mode of action anti-osteoporotic soy isoflavone rebalancing bone turnover towards bone formation. Curr. Med. Chem. 2010;17:3007-3018.

Che Zain MS, Lee SY, Teo CY, Shaari K. Adsorption and desorption properties of total flavonoids from oil palm (Elaeis guineensis Jacq.) mature leaf on macroporous adsorption resins. Molecules. 2020;25:778.

Abeywardena M, Runnie I, Nizar M, Suhaila M, Head R, Momamed S. Polyphenol-enriched extract of oil palm fronds (Elaeis guineensis) promotes vascular relaxation via endothelium-dependent mechanisms. Asia Pac. J. Clin. Nutr. 2002;11:S467-S472.

Costas-Ferreira C, Durán R, Faro LR. Toxic effects of glyphosate on the nervous system: A systematic review. Int. J. Mol. Sci. 2022;23:4605.

Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol. Biol. Rep. 2023;50:5465-5479.

Clarke G, Ting KN, Wiart C, Fry J. High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential, and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants (Basel). 2013;2:1-14. Epub ahead of print 1 March 2013.

Huang D, Boxin OU, Prior RL. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841-1856.

Che Zain MS, Edirisinghe SL, Kim CH, De Zoysa M, Shaari K. Nanoemulsion of flavonoid-enriched oil palm (Elaeis guineensis Jacq.) leaf extract enhances wound healing in zebrafish. Phytomedicine Plus. 2021;1:100076. Epub ahead of print 1 November 2021.

Yusof NZ, Abd Gani SS, Hasan ZAA, Idris Z. Skin and eye irritation assessment of oil palm (Elaeis guineensis) leaf extract for topical application. Int. J. Toxicol. 2018;37:335-343.

Jang M, Hwang I, Hwang B, Kim G. Anti-inflammatory effect of Antirrhinum majus extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Sci. Nutr. 2020;8:5063-5070.

Li H, Lu Y, Geng Y. Analysis of the effect of vitamin C at IC50 on RAW 264.7 and K562 cells based on 1H NMR metabonomics. ACS Food Sci. Technol. 2021;1:1120-1129.

Bakhsh A, Mustapha NM, Mohamed S. Catechin-rich oil palm leaf extract enhances bone calcium content of estrogen-deficient rats. Nutrition. 2013;29:667-672.

Shen CL, Chyu MC. Tea flavonoids for bone health: From animals to humans. J. Investig. Med. 2016;64:1151-1157.

Miao Y, Zhao L, Lei S, Zhao C, Wang Q, Tan C, Peng C, Gong J. Caffeine regulates both osteoclast and osteoblast differentiation via the AKT, NF-?B, and MAPK pathways. Front. Pharmacol. 2024;15:1405173.

Sim JS, Lee HY, Yim M. Anti osteoclastogenic effects of Coriandrum sativum L. via the NF ?B and ERK mediated NFATc1 signaling pathways. Mol. Med. Rep. 2022;26:1-7.

Orabona C, Orecchini E, Volpi C, Bacaloni F, Panfili E, Pagano C, et al. Crocus sativus L. petal extract inhibits inflammation and osteoclastogenesis in RAW 264.7 cell model. Pharmaceutics. 2022;14:1-14.

Ma Y, Wang L, Zheng S, Xu J, Pan Y, Tu P, et al. Osthole inhibits osteoclast formation and bone resorption by regulating NF-?B signaling and NFATc1 activations stimulated by RANKL. J. Cell. Biochem. 2019;120:16052-16061.

Bikle DD, Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al. Vitamin D: Production, metabolism, and mechanisms of action. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Updated 2021 Dec 31. Available from: https://pubmed.ncbi.nlm.nih.gov/25905172/.

Choi HK, Kim GJ, Yoo HS, Song DH, Chung KH, Lee KJ, et al. Vitamin C activates osteoblastogenesis and inhibits osteoclastogenesis via Wnt/?-catenin/ATF4 signaling pathways. Nutrients. 2019;11:1882.

Zeng LF, Luo MH, Liang GH, Yang WY, Xiao X, Wei X, et al. Can dietary intake of vitamin C-oriented foods reduce the risk of osteoporosis, fracture, and BMD loss? Systematic review with meta-analyses of recent studies. Front. Endocrinol. (Lausanne). 2020;10:874. Epub ahead of print 3 February 2020.

Sun Y, Liu C, Bo Y, You J, Zhu Y, Duan D, et al. Dietary vitamin C intake and the risk of hip fracture: A dose-response meta-analysis. Osteoporos. Int. 2018;29:79-87.

Brzezi?ska O, ?ukasik Z, Makowska J, Walczak K. Role of vitamin C in osteoporosis development and treatment-A literature review. Nutrients. 2020;12:1-22.

Miaoping L, Yanhui T, Humu L, Yuyao F, Min L, Chenghai G, Yonghong L, Xiaowei L. Azaphilone derivatives with RANKL-induced osteoclastogenesis inhibition from the mangrove endophytic fungus Diaporthe sp. Chin. J. Nat. Med. 2024;22:1-10.

Downloads

Published

25.12.2024

How to Cite

Safa, P., Ismail, P., Noor, S. M., & Manan, N. A. (2024). Inhibitory Effects of Oil Palm Leaf Extract on Osteoclastogenesis in RAW 264.7 Macrophages. Journal of Biochemistry, Microbiology and Biotechnology, 12(2), 24–32. https://doi.org/10.54987/jobimb.v12i2.1014

Issue

Section

Articles