Characterization of a Pseudomonas sp. Isolated from Langkawi Capable of Degrading Glyphosate

Authors

  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Mohd Izuan Effendi Halmi Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Mohd Ezuan Khayat Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v7i2.914

Keywords:

Bioremediation, Glyphosate, Pollution, Pseudomonas sp., Heavy metal

Abstract

Bioremediation of soil contaminants, including glyphosate, is an economically viable and environmentally friendly technique. Glyphosate, one of the most widely used herbicides for weed management, poses significant risks to wildlife and their habitats when it contaminates the environment. This study focused on the bioremediation potential of soil Pseudomonas spp. isolated from a paddy field with a long history of glyphosate application. The most promising isolate was tentatively identified as Pseudomonas sp. strain UPM-2009 through partial identification methods. This bacterium showed significant potential for glyphosate degradation under optimal conditions. Experiments demonstrated that Pseudomonas sp. degrades glyphosate most effectively at pH 7.0, a glyphosate concentration of 0.5 g/L, temperatures between 30 and 35°C, and an inoculum size of 1% (v/v). Notably, the bacterium exhibited a two-day lag period at 0.5 g/L glyphosate, achieving nearly 90% degradation after six days of incubation. Heavy metals such as Hg(II), Ag(I), and Cd(II) significantly inhibited bacterial growth, with inhibition rates of 99%, 95%, and 66%, respectively. This study underscores the potential of Pseudomonas sp. for bioremediation of glyphosate-contaminated environments. It highlights the need for further research, particularly molecular identification techniques, to fully characterize and optimize this bioremediation strategy. This approach can significantly contribute to mitigating the environmental impact of glyphosate pollution, promoting healthier ecosystems and sustainable agricultural practices.

References

Ying KK, Sulaiman MR. Toxicity effect of bisphenol-A in several animal studies: A mini review. Bioremediation Sci Technol Res. 2013 Dec 31;1(1):23-6.

Fardami AY, Kawo AH, Yahaya S, Lawal I, Abubakar AS, Maiyadi KA. A Review on Biosurfactant Properties, Production and Producing Microorganisms. J Biochem Microbiol Biotechnol. 2022 Jul 31;10(1):5-12.

Yakubu A, Uba G, Vyas A. Optimization of Culture Conditions for the Production of Alkaline Cellulase Enzyme Produced from Fusarium oxysporum VSTPDK. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):3-9.

Mohammed UY, Hamzah AP, Abubakar S. Consistent Organochlorinated Pesticides (OPC) Residues Contamination in Beans Consumed in Gombe Metropolis Nigeria. J Environ Bioremediation Toxicol. 2021 Dec 31;4(2):1-6.

Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, et al. Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng. 2021;9(4).

Tepanosyan G, Maghakyan N, Sahakyan L, Saghatelyan A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol Environ Saf. 2017;142:257-65.

Khandaker MU, Asaduzzaman K, Nawi SM, Usman AR, Amin YM, Daar E, et al. Assessment of radiation and heavy metals risk due to the dietary intake of marine fishes (Rastrelliger kanagurta) from the Straits of Malacca. PLoS ONE. 2015;10(6):1-16.

Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al. Human health risk of polycyclic aromatic hydrocarbons from consumption of blood cockle and exposure to contaminated sediments and water along the Klang Strait, Malaysia. Mar Pollut Bull. 2014 Jul 15;84(1):268-79.

Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74-88.

Grant WF. The present status of higher plant bioassays for the detection of environmental mutagens. Mutat Res Regul Pap. 1994;310(2):175-85.

Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, et al. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol Part - C Toxicol Pharmacol. 2021;239.

Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere. 2020 Feb;241:125017.

Nwonumara GN, Okogwu OI. Oxidative and biochemical responses as indicators of chemical stress in Clarias gariepinus (Burchell, 1822) juvenile exposed to glyphosate. Sci Afr. 2020;8.

Moraes JS, da Silva Nornberg BF, Castro MRD, Vaz BDS, Mizuschima CW, Marins LFF, et al. Zebrafish (Danio rerio) ability to activate ABCC transporters after exposure to glyphosate and its formulation Roundup Transorb®. Chemosphere. 2020;248.

Carvalho WF, Ruiz de Arcaute C, Torres L, de Melo e Silva D, Soloneski S, Larramendy ML. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Sci Pollut Res. 2020;27(6):6515-25.

Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, et al. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2019;216.

Yusof S, Ismail A, Alias MS. Effect of glyphosate-based herbicide on early life stages of Java medaka (Oryzias javanicus): a potential tropical test fish. Mar Pollut Bull. 2014 Aug 30;85(2):494-8.

Kittle RP, McDermid KJ. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J Appl Phycol. 2016 Aug 1;28(4):2597-604.

Rahman F, Ismail A, Yusof S, Mazlan N, Engku-Ahmad-Khairi EA. Evaluation of Glyphosate Levels in Sediments of Milky Stork Foraging Areas in Kuala Gula Bird Sanctuary, Perak, Malaysia. Pertanika J Trop Agric Sci. 2019 Aug 20;42:995-1007.

Mardiana-Jansar K, Ismail BS, Razak FA, Maideen HMK, Sidek HMohd, Noorani MSN, et al. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia. AIP Conf Proc. 2014 Sep 3;1614(1):795-802.

Lee LJ, Ngim J. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag Sci. 2000;56(4):336-9.

Cheah UB, Kirkwood RC, Lum KY. Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pestic Sci. 1997;50(1):53-63.

Wilson DJ, Patton S, Florova G, Hale V, Reynolds KA. The shikimic acid pathway and polyketide biosynthesis. J Ind Microbiol Biotechnol. 1998 May 1;20(5):299-303.

Amrhein N, Johänning D, Smart CC. A Glyphosate-Tolerant Plant Tissue Culture. In: Neumann KH, Barz W, Reinhard E, editors. Primary and Secondary Metabolism of Plant Cell Cultures. Berlin, Heidelberg: Springer; 1985. p. 356-61. (Proceedings in Life Sciences).

Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol. 2021;23(6):2891-905.

Schulz A, Krüper A, Amrhein N. Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol Lett. 1985 Jul 1;28(3):297-301.

Fadanka S, Minette S, Mowoh N. Preparation of Bacteria Glycerol Stocks. 2022 Aug 1 [cited 2024 Jun 6]; Available from: https://www.protocols.io/view/preparation-of-bacteria-glycerol-stocks-censtdee

Pongraveevongsa P, Khobjai W, Wunnapuk K, Sribanditmongkol P. High-performance liquid chromatography/uv detection for determination of glyphosate in serum and gastric content. Chiang Mai Med J. 2008;47(4):155-62.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergeys Man Determinative Bacteriol. 1994;

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Talbot HW, Johnson LM, Munnecke DM. Glyphosate utilization byPseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol. 1984 Sep 1;10(5):255-9.

Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaeffer J. Metabolism of glyophosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol. 1988;54(12):2953-8.

Penaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol. 1995;61(2):538-43.

Moneke AN, Okpala GN, Anyanwu CU. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol. 2010;9(26):4067-74.

Lutos?awski K, Ryznar-Luty A, Cibis E, Krzywonos M, Mi?kiewicz T. Biodegradation of beet molasses vinasse by a mixed culture of micro organisms: Effect of aeration conditions and pH control. J Environ Sci China. 2011 Nov 1;23:1823-30.

Benslama O, Boulahrouf A. Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria. Afr J Miicrbiology Res. 2013 Dec 11;7:5587-95.

Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE, et al. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res. 2014 Jan 20;169(1):99-105.

Aliyu FI, Ibrahim A, Babandi A, Shehu D, Ya'u M, Babagana K, et al. Glyphosate Biodegradation by Molybdenum-Reducing Pseudomonas sp. J Environ Microbiol Toxicol. 2022 Dec 31;10(2):42-7.

Balthazor TM, Hallas LE. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986;51(2):432-4.

Quinn JP, Peden JMM, Dick RE. Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol. 1989;31(3):283-7.

Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol. 2002;68(4):2081-4.

Liu CM, McLean PA, Sookdeo CC, Cannon FC. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol. 1991;57(6):1799-804.

Peng RH, Tian YS, Xiong AS, Zhao W, Fu XY, Han HJ, et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PloS One. 2012;7(8):e39579.

Sufyan AJ, Ibrahim S, Babandi A, Yakasai HM. Characterization of Butachlor Degradation by A Molybdenum-Reducing and Aniline-degrading Pseudomonas sp. J Environ Microbiol Toxicol. 2021 Dec 31;9(2):8-12.

Tijjani AU, Sufyan AJ, Ibrahim S, Shehu D, Ya'u M, Babagana K, et al. Characterization of Aniline Degradation by A Previously Isolated Molybdenum-reducing Pseudomonas sp. Bioremediation Sci Technol Res. 2021 Dec 31;9(2):17-20.

Shehu D, Muhammed YG, Abdullahi S, Ya'u M, Ibrahim S, Babandi A, et al. Isolation and Molecular Characterisation of Polycyclic Aromatic Hydrocarbons (PAHs) Degrading Bacteria from Petrochemical Contaminated Soil. Malays J Appl Sci. 2023 Oct 31;8(2):1-12.

Nourouzi MM, Chuah TG, Choong TSY, Rabiei F. Modeling biodegradation and kinetics of glyphosate by artificial neural network. J Environ Sci Health B. 2012;47(5):455-65.

Adams MR, Little CL, Easter MC. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J Appl Bacteriol. 1991;71(1):65-71.

Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs. 2011;9(1):29-42.

Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, et al. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol. 2012;58(4):263-71.

Sharifi Y, Pourbabaei AA, Javadi A, Abdolmohammad MH, Saffari M, Morovvati A. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake. Iran Env Health Eng Manag J. 2015;2(1):31-6.

Lerbs W, Stock M, Parthier B. Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch Microbiol. 1990;153(2):146-50.

Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health - Part B Pestic Food Contam Agric Wastes. 2013;48(3):208-13.

Somara S, Siddavattam D. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int. 1995;36(3):627-31.

Krzy?ko-?upicka T, Orlik A. Use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere. 1997;34(12):2601-5.

Manogaran M, Yasid NA, Ahmad SA. Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. J Biochem Microbiol Biotechnol. 2017 Jul 31;5(1):21-5.

Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY. Characterisation of the simultaneous molybdenum reduction and glyphosate degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. 3 Biotech. 2018 Feb 7;8(2):117.

Manogaran M, Shukor MY, Yasid NA, Johari WLW, Ahmad SA. Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei. 2017;28(3):471-9.

Mohy-Ud-Din W, Akhtar MJ, Bashir S, Asghar HN, Nawaz MF, Chen F. Isolation of Glyphosate-Resistant Bacterial Strains to Improve the Growth of Maize and Degrade Glyphosate under Axenic Condition. Agriculture. 2023 Apr;13(4):886.

Moore JK, Braymer HD, Larson AD. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol. 1983;46(2):316-20.

Dick RE, Quinn JP. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett. 1995;134(2-3):177-82.

Dick RE, Quinn JP. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol. 1995 Jul;43(3):545-50.

Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor MS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca strain Saw-5 in soils from Sarawak. Agrivita. 2016;38(1):1-13.

Hernández Guijarro K, De Gerónimo E, Erijman L. Glyphosate biodegradation potential in soil based on glycine oxidase gene (thio) from Bradyrhizobium. Curr Microbiol. 2021 May;78(5):1991-2000.

Stoyanova K, Gerginova M, Peneva N, Dincheva I, Alexieva Z. Biodegradation and Utilization of the Pesticides Glyphosate and Carbofuran by Two Yeast Strains. Processes. 2023 Nov 30;11(12):3343.

Omorinola AA, Ogunbiyi OJ, Jegede RJ, Adeleke MA, Fakolade BA. Biodegradation of glyphosate containing herbicide by soil fungi. Innovare J Life Sci. 2023 Sep 26;36-40.

Han H, Zhang H, Qin S, Zhang J, Yao L, Chen Z, et al. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. Chemosphere. 2021 Aug;276:130157.

Zhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol. 2018 Jun;102(12):5033-43.

Tang FHM, Jeffries TC, Vervoort RW, Conoley C, Coleman NV, Maggi F. Microcosm experiments and kinetic modeling of glyphosate biodegradation in soils and sediments. Sci Total Environ. 2019 Mar;658:105-15.

Wilms W, Parus A, Homa J, Batycka M, Niemczak M, Wo?niak-Karczewska M, et al. Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation. Chemosphere. 2023 Mar;316:137717.

Hernández Guijarro K, De Gerónimo E, Erijman L. Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium. Curr Microbiol. 2021 May;78(5):1991-2000.

Martins GL, De Souza AJ, Osti JF, Gontijo JB, Cherubin MR, Viana DG, et al. The Role of Land Use, Management, and Microbial Diversity Depletion on Glyphosate Biodegradation in Tropical Soils. 2023 [cited 2024 Jun 4]; Available from: https://www.ssrn.com/abstract=4385942

Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol. 2022 Jun;38(6):98.

Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, et al. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res GMR. 2015 Nov 23;14(4):14717-30.

Downloads

Published

2023-12-31

How to Cite

Yakasai, H. M. ., Manogaran, M. ., Halmi, M. I. E., Abubakar, A., & Khayat, M. E. (2023). Characterization of a Pseudomonas sp. Isolated from Langkawi Capable of Degrading Glyphosate. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(2), 26–33. https://doi.org/10.54987/bessm.v7i2.914

Issue

Section

Articles