Primary Modeling of Microbial Growth under Toxic Conditions with the Modified Schnute Model

Authors

  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Mohd Badrin Hanizam Abdul Rahim Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Ezuan Kh Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v7i2.910

Keywords:

Primary models, Acrylamide, Acrylamide-degrading bacterium, Modified Schnute, Pseudomonas sp.

Abstract

Primary modeling of microbial growth is essential for determining key parameters such as the maximum specific growth rate (μm), which are foundational for secondary modeling. These models, including those by Monod, Haldane, Aiba, and Teissier, elucidate the impact of substrates on bacterial growth and biotransformation processes, vital for biotechnological applications like wastewater treatment and bioremediation. Experimental data showed that acrylamide from 250 to 1250 mg/L as a sole nitrogen source is toxic, slowing bacterial growth at higher concentrations resulting in an increase in lag periods ranging from 3 to 9 hours. Various primary models were tested, with the modified Schnute model providing the best fit based on statistical analysis, normality tests, and key parameters such as adjusted coefficient of determination near to unity, lowest values for RMSE and AICc values and good values of accuracy (AF) and bias factors (BF). The modified Schnute model's reliability underscores its suitability for modeling bacterial growth under toxic conditions, offering valuable insights for optimizing biotechnological processes involving bacterial adaptation and growth under stress conditions.

References

Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):41-5.

Shukor MS, Shukor MY. Bioremoval of toxic molybdenum using dialysis tubing. Chem Eng Res Bull. 2015;18(1):6-11.

Sevinç P, Gündüz U, Eroglu I, Yücel M. Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. Int J Hydrog Energy. 2012;37(21):16430-6.

McClure PJ, Cole MB, Davies KW. An example of the stages in the development of a predictive mathematical model for microbial growth: the effects of NaCl, pH and temperature on the growth of Aeromonas hydrophila. Int J Food Microbiol. 1994;23(3-4):359-75.

Dalgaard P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int J Food Microbiol. 1995;26(3):305-17.

Yahuza S, Dan-Iya BI, Sabo IA. Modelling the Growth of Enterobacter sp. on Polyethylene. J Biochem Microbiol Biotechnol. 2020 Jul 31;8(1):42-6.

Rusnam, Yakasai HM, Rahman MF, Gusmanizar N, Shukor MY. Mathematical Modeling of Molybdenum-Blue Production from Bacillus sp. strain Neni-. Bioremediation Sci Technol Res. 2021 Jul 31;9(1):7-12.

Yakasai MH, Manogaran M. Kinetic Modelling of Molybdenum-blue Production by Bacillus sp. strain Neni-10. J Environ Microbiol Toxicol. 2020 Jul 31;8(1):5-10.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000;54(3):171-80.

Kim HW, Lee SA, Yoon Y, Paik HD, Ham JS, Han SH, et al. Development of kinetic models describing kinetic behavior of Bacillus cereus and Staphylococcus aureus in milk. Korean J Food Sci Anim Resour. 2013;33(2):155-61.

Li MY, Sun XM, Zhao GM, Huang XQ, Zhang JW, Tian W, et al. Comparison of Mathematical Models of Lactic Acid Bacteria Growth in Vacuum-Packaged Raw Beef Stored at Different Temperatures. J Food Sci. 2013;78(4):M600-4.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14(4):313-26.

Uba G, Manogaran M, Yakasai HM, Yasid NA, Shukor MY. Response Surface Method for the Optimization of Pseudomonas sp. strain DrY135 Growth on Acrylamide as a Nitrogen Source. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2022 Dec 31;6(2):23-34.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987 Nov;1(5):365-74.

Halmi, MIE, ,Shukor MS, Johari W.L.W WLW, Shukor MY. Mathematical Modeling of the Growth Kinetics of Bacillus sp . on Tannery Effluent Containing Chromate. J Environ Bioremediation Toxicol. 2014;2(1):6-10.

Akaike H. Factor analysis and AIC. Psychometrika. 1987;52(3):317-32.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Halmi MIE, Wasoh H, Sukor S, Ahmad SA, Yusof MT, Shukor MY. Bioremoval of molybdenum from aqueous solution. Int J Agric Biol. 2014;16(4):848-50.

Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994;23(3-4):277-94.

Agarry SE, Audu TOK, Solomon BO. Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol. 2009;6(3):443-50.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Halmi MIE, Shukor MS, Masdor NA, Shamaan NA, Shukor MY. Testing the normality of residuals on regression model for the growth of Paracoccus sp. SKG on acetonitrile. J Environ Bioremediation Toxicol. 2015;3(1):15-7.

Çelekli A, Bozkurt H, Dönmez G. Predictive modeling of ?-carotene accumulation by Dunaliella salina as a function of pH, NaCI, and irradiance. Russ J Plant Physiol. 2014;61(2):215-23.

Bozkurt H, Erkmen O. Predictive modeling of Yersinia enterocolitica inactivation in Turkish Feta cheese during storage. J Food Eng. 2001;47(2):81-7.

Umar AM, Shukor MYA. Modelling the Growth of Nile Tilapia (Oreochromis niloticus) on Fed Diets Formulated from Local Ingredients in Cages. Bull Environ Sci Sustain Manag. 2020 Jul 31;4(1):1-6.

Çelekli A, Bozkurt H, Dönmez G. Predictive modeling of ß-carotene accumulation by Dunaliella salina as a function of pH, NaCI, and irradiance. Russ J Plant Physiol. 2014;61(2):215-23.

Schnute J. A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci. 1981;38:1128-40.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Aragón-Noriega EA, Calderon-Aguilera LE, Pérez-Valencia SA. Modeling growth of the cortes geoduck panopea globosa from unexploited and exploited beds in the northern gulf of California. J Shellfish Res. 2015;34(1):119-27.

Lei Y, Zhang SY. Comparison and selection of growth models using the Schnute model. J For Sci. 2006;52(4):188-96.

Bolker BM. Ecological Models and Data in R. Princeton, N.J: Princeton University Press; 2008. 408 p.

Downloads

Published

2023-12-31

How to Cite

Abubakar, A., Manogaran, M. ., Rahim, M. B. H. A., & Kh, M. E. (2023). Primary Modeling of Microbial Growth under Toxic Conditions with the Modified Schnute Model. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(2), 5–11. https://doi.org/10.54987/bessm.v7i2.910

Issue

Section

Articles