Isothermal Modelling of the Adsorption of Malachite Green onto Rice husks

Authors

  • Bilal Ibrahim Dan-Iya Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Salihu Yahuza Department of Microbiology and Biotechnology, Faculty of Science, Federal University Dutse, P.M.B., 7156, Dutse, Jigawa State, Nigeria.
  • Ibrahim Alhaji Sabo Department of Microbiology, Faculty of Science, Bauchi State University Gadau, P.M.B 065, Bauchi, Nigeria.
  • Abdullahi Adamu Faggo Department of Microbiology, Faculty of Pure and Applied Sciences, Federal University Wukari, P.M.B. 1020 Wukari, Taraba State Nigeria.
  • Mohd Ezuan Khayat Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v7i1.904

Keywords:

Biosorption, Malachite Green, Isotherm, Modified rice husks, Jovanovic isotherm

Abstract

The rice milling process produces rice husks as a by-product. It is one of the most important agricultural leftovers in terms of volume. The data of the sorption isotherm of Malachite Green sorption onto rice husks, which was plotted using linearized plots of isothermal models were reanalyzed using twenty isothermal models using nonlinear regression. Nineteen models — Henry, Langmuir, Freundlich, Jovanovic, Redlich-Peterson, Sips, Toth, Hill, Khan, BET, Vieth-Sladek, Radke-Prausnitz, Fritz-Schlunder III, Unilan, Baudu, Marczewski-Jaroniec,  Fritz-Schluender IV, Weber-van Vliet and Fritz-Schluender V – fitted the data best using non-linear regression. Statistical analysis based on error function analyses such as root-mean-square error (RMSE), adjusted coefficient  of determination  (adjR2),  accuracy factor (AF),  bias  factor  (BF), Bayesian Information Criterion (BIC), corrected AICc (Akaike Information Criterion), and Hannan-Quinn Criterion (HQC) showed that the best isotherm model was found to be the Redlich-Petersen with the lowest RMSE and AF, BF and adjR2 values closest to unity and lowest BIC, HQC and AICc values followed (descending order) by Jovanovic, Langmuir, Henry and Freundlich. The maximal adsorption capacity in the Jovanovic model will be used for comparative purposes since the Redlich-Petersen model does not feature a similar parameter. The  maximal adsorption capacity expressed in milligrams per gram (mg/g), for the Jovanovic model, denoted by qmJ and Kj-the Jovanovic constant, showed the calculated values of 4.04 mg/L (95% confidence interval; 3.306 to 4.773) and 0.445 (95% confidence interval; 0.264 to 0.627), respectively. The nonlinear regression method provides parameter values within the 95% confidence interval, facilitating improved comparability with prior research.

References

Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3(2):275-90.

Hielscher K. Ultrasonic Milling and Dispersing Technology for Nano-Particles. MRS Online Proc Libr. 2012;1479(1):21-6.

Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon. 2022;8(4):e09261.

Zab?ocka-Godlewska E, Przysta? W, Grabi?ska-Sota E. Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes. Water Air Soil Pollut. 2018;229(6).

Slama H Ben, Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, et al. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci Switz. 2021;11(14):1-21.

Khattab TA, Abdelrahman MS, Rehan M. Textile dyeing industry: environmental impacts and remediation. Environ Sci Pollut Res. 2020;27(4):3803-18.

Thamaraiselvan C, Noel M. Membrane processes for dye wastewater treatment: Recent progress in fouling control. Crit Rev Environ Sci Technol. 2015;45(10):1007-40.

Brik M, Chamam B, Schöberl P, Braun R, Fuchs W. Effect of ozone, chlorine and hydrogen peroxide on the elimination of colour in treated textile wastewater by MBR. Water Sci Technol. 2004;49(4):299-303.

Sivalingam S, Sen S. Rice husk ash derived nanocrystalline ZSM-5 for highly efficient removal of a toxic textile dye. J Mater Res Technol. 2020;9(6):14853-64.

Mohanty K, Naidu JT, Meikap BC, Biswas MN. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res. 2006;45(14):5165-71.

Quansah JO, Hlaing T, Lyonga FN, Kyi PP, Hong SH, Lee CG, et al. Nascent rice husk as an adsorbent for removing cationic dyes from textile wastewater. Appl Sci Switz. 2020;10(10).

Persulfate B activated, Avramiotis E, Frontistis Z, Manariotis ID, Vakros J, Mantzavinos D. Oxidation of Sulfamethoxazole by Rice Husk. 2021;

Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66(3):319-29.

Guerra-Lopez D, Daniels L, Rawat M. Mycobacterium smegmatis mc2 155 fbiC and MSMEG_2392 are involved in triphenylmethane dye decolorization and coenzyme F420 biosynthesis. Microbiology. 2007;153(8):2724-32.

Chowdhury S, Mishra R, Saha P, Kushwaha P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination. 2011;265(1-3):159-68.

Witek-Krowiak A. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust. Chem Eng J. 2011 Jul 15;171(3):976-85.

Poe RW, Wilson RP. Absorption of malachite green by channel catfish. Progress Fish Cult U S Fish Wildl Serv. 1983;228-9.

Roybal JE, Pfenning AP, Munns RK, Holland DC, Hurlbut JA, Long AR. Determination of malachite green and its metabolite, leucomalachite green, in catfish (Ictalurus punctatus) tissue by liquid chromatography with visible detection. J AOAC Int. 1995;78(2):453-7.

Doerge DR, Churchwell MI, Gehring TA, Pu YM, Plakas SM. Analysis of malachite green and metabolites in fish using liquid chromatography atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom RCM. 1998;12(21):1625-34.

Khattri SD, Singh MK. Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut. 2000;120(3-4):283-94.

Myung HK, Kim Y, Park HJ, Jong SL, Kwak SN, Jung WH, et al. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase. J Biol Chem. 2008;283(46):31981-90.

Lian Z, Wang J. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination. Mar Pollut Bull. 2012 Dec 1;64(12):2656-62.

Dhananjaneyulu BV, Kumaraswamy K. Kinetic and thermodynamic studies on adsorption of malachite green from aqueous solution using mixed adsorbents (Rice husk and egg shell). Res J Pharm Technol. 2016;9(10):1671-6.

Albert A. Selective toxicity. The physico-chemical basis of therapy. [Internet]. 7th ed. London, U.K.: Chapman & Hall; 1985 [cited 2023 May 29]. Available from: https://www.cabdirect.org/cabdirect/abstract/19802704337

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987;1(5):365-74.

Muinde VM, Onyari JM, Wamalwa B, Wabomba J, Nthumbi RM. Adsorption of Malachite Green from Aqueous Solutions onto Rice Husks: Kinetic and Equilibrium Studies. J Environ Prot. 2017 Mar 10;8(3):215-30.

Dan-Iya BI, Shukor MY. Isothermal Modelling of the Adsorption of Chromium onto Calcium Alginate Nanoparticles. J Environ Microbiol Toxicol. 2021;9(2):1-7.

Khare KS, Phelan FR. Quantitative Comparison of Atomistic Simulations with Experiment for a Cross-Linked Epoxy: A Specific Volume-Cooling Rate Analysis. Macromolecules. 2018;51(2):564-75.

Halmi MIE, Ku Ahamad KE, Shukor MY, Wasoh MH, Abdul Rachman AR, Sabullah MK, et al. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-8.

Langmuir I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. J Am Chem Soc. 1918;40(2):1361-402.

Schirmer W. Physical Chemistry of Surfaces. Z Für Phys Chem. 1999;210(1):134-5.

Ridha FN, Webley PA. Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites. Sep Purif Technol. 2009;67(3):336-43.

Jovanovi? DS. Physical adsorption of gases - I: Isotherms for monolayer and multilayer adsorption. Kolloid-Z Amp Z Für Polym. 1969;235(1):1203-13.

Carmo AM, Hundal LS, Thompson ML. Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients. Environ Sci Technol. 2000;34(20):4363-9.

Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim USSR. 1940;12(3):327-56.

Radushkevich LV. Potential theory of sorption and structure of carbons. Zhurnal Fiz Khimii. 1949;23:1410-20.

Dubinin MM. Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zh Fiz Khim. 1965;39(6):1305-17.

Redlich O, Peterson DL. A Useful Adsorption Isotherm. Shell Dev Co Emeryv Calif. 1958;63:1024.

Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16(5):490-5.

Tóth J. Uniform interpretation of gas/solid adsorption. Adv Colloid Interface Sci. 1995;55(C):1-239.

Khan AA, Singh RP. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 1987;24(1):33-42.

Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Soc. 1938;60(2):309-19.

Vieth WR, Sladek KJ. A model for diffusion in a glassy polymer. J Colloid Sci. 1965;20(9):1014-33.

Radke CJ, Prausnitz JM. Adsorption of Organic Solutes from Dilute Aqueous Solution of Activated Carbon. J Am Chem Soc. 1972;11(4):445-51.

Gregg SJ, Sing KSW. Adsorption, surface area, and porosity. London: Academic Press; 1991. 328 p.

Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci. 1974;29(5):1279-82.

Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33(2):261-304.

Akaike H. A New Look at the Statistical Model Identification. IEEE Trans Autom Control. 1974;19(6):716-23.

Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem. 1959;63(6):1024.

Sivarajasekar N, Baskar R. Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis. Desalination Water Treat. 2014 Dec 6;52(40-42):7743-65.

Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J Chem. 2017 Sep 5;2017:e3039817.

Daifullah AAM, Girgis BS, Gad HMH. Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett. 2003;57(11):1723-31.

Abdelwahab O, Nemr A El, El-Sikaily A, Khaled A. Use of rice husk for adsorption of direct dyes from aqueous solution: A case study of direct F. Scarlet Green synthesis of TiO2 nanoparticles and its toxicity View project Industrial valorization of local biological materials and wastes for wastewater tre. Egypt J Aquat Res. 2005;31(May).

Della VP, Kühn I, Hotza D. Caracterização de cinza de casca de arroz para uso como matéria-prima na fabricação de refratários de sílica. Quimica Nova. 2001;24(6):778-82.

Downloads

Published

2023-07-31

How to Cite

Dan-Iya, B. I. ., Yahuza, S., Sabo, I. A., Faggo, A. A., & Khayat, M. E. (2023). Isothermal Modelling of the Adsorption of Malachite Green onto Rice husks. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(1), 58–65. https://doi.org/10.54987/bessm.v7i1.904

Issue

Section

Articles