Characterization of a Glyphosate-degrading Bacterium from a Paddy Field in Kepala Batas, Penang
DOI:
https://doi.org/10.54987/bessm.v7i1.901Keywords:
Bioremediation, Glyphosate, Pollution, Pseudomonas sp., Heavy metalAbstract
Bioremediation of contaminants, including glyphosate, a herbicide, is an economically viable and environmentally friendly technique. Glyphosate is the most utilized herbicides for weed management. Pollution from glyphosate is dangerous to wildlife and their habitats. Soil Pseudomonas sp. strain UMP-KB2 obtained from a paddy field was used as the only source of carbon and described for its capacity to degrade glyphosate. The growth of these bacteria was measured spectrophotometrically as A600 nm in response to changes in incubation time, g inoculum size, glyphosate concentration (carbon source), temperature and pH. The bacterium degrades glyphosate optimally at pH 7.0, glyphosate concentration of 0.5 g/L, temperatures of between 30 and 35 ºC, and inoculum size 1% (v/v). Growth at 0.5 g/L glyphosate shows a two-day lag period and nearly 90% degradation after six days of incubation. The isolation of a glyphosate-degrading bacterium that utilizes glyphosate as a carbon source will be very useful in mineralizing glyphosate in contaminated agriculture soil.
References
Ying KK, Sulaiman MR. Toxicity effect of bisphenol-A in several animal studies: A mini review. Bioremediation Sci Technol Res. 2013 Dec 31;1(1):23-6.
Fardami AY, Kawo AH, Yahaya S, Lawal I, Abubakar AS, Maiyadi KA. A Review on Biosurfactant Properties, Production and Producing Microorganisms. J Biochem Microbiol Biotechnol. 2022 Jul 31;10(1):5-12.
Yakubu A, Uba G, Vyas A. Optimization of Culture Conditions for the Production of Alkaline Cellulase Enzyme Produced from Fusarium oxysporum VSTPDK. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):3-9.
Mohammed UY, Hamzah AP, Abubakar S. Consistent Organochlorinated Pesticides (OPC) Residues Contamination in Beans Consumed in Gombe Metropolis Nigeria. J Environ Bioremediation Toxicol. 2021 Dec 31;4(2):1-6.
Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, et al. Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng. 2021;9(4).
Tepanosyan G, Maghakyan N, Sahakyan L, Saghatelyan A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol Environ Saf. 2017;142:257-65.
Khandaker MU, Asaduzzaman K, Nawi SM, Usman AR, Amin YM, Daar E, et al. Assessment of Radiation and Heavy Metals Risk Due to The DietaryIntake of Marine Fishes textlessitextgreater(Rastrelliger kanagurta)textless/itextgreater from the Straits of Malacca. PLoS ONE. 2015;10(6):1-16.
Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al. Human health risk of polycyclic aromatic hydrocarbons from consumption of blood cockle and exposure to contaminated sediments and water along the Klang Strait, Malaysia. Mar Pollut Bull. 2014 Jul 15;84(1):268-79.
Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74-88.
Grant WF. The present status of higher plant bioassays for the detection of environmental mutagens. Mutat Res Regul Pap. 1994;310(2):175-85.
Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, et al. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol Part - C Toxicol Pharmacol. 2021;239.
Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere. 2020 Feb;241:125017.
Nwonumara GN, Okogwu OI. Oxidative and biochemical responses as indicators of chemical stress in Clarias gariepinus (Burchell, 1822) juvenile exposed to glyphosate. Sci Afr. 2020;8.
Moraes JS, da Silva Nornberg BF, Castro MRD, Vaz BDS, Mizuschima CW, Marins LFF, et al. Zebrafish (Danio rerio) ability to activate ABCC transporters after exposure to glyphosate and its formulation Roundup Transorb®. Chemosphere. 2020;248.
Carvalho WF, Ruiz de Arcaute C, Torres L, de Melo e Silva D, Soloneski S, Larramendy ML. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Sci Pollut Res. 2020;27(6):6515-25.
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, et al. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2019;216.
Yusof S, Ismail A, Alias MS. Effect of glyphosate-based herbicide on early life stages of Java medaka (Oryzias javanicus): a potential tropical test fish. Mar Pollut Bull. 2014 Aug 30;85(2):494-8.
Kittle RP, McDermid KJ. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J Appl Phycol. 2016 Aug 1;28(4):2597-604.
Rahman F, Ismail A, Yusof S, Mazlan N, Engku-Ahmad-Khairi EA. Evaluation of Glyphosate Levels in Sediments of Milky Stork Foraging Areas in Kuala Gula Bird Sanctuary, Perak, Malaysia. Pertanika J Trop Agric Sci. 2019 Aug 20;42:995-1007.
Mardiana-Jansar K, Ismail BS, Razak FA, Maideen HMK, Sidek HMohd, Noorani MSN, et al. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia. AIP Conf Proc. 2014 Sep 3;1614(1):795-802.
Lee LJ, Ngim J. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag Sci. 2000;56(4):336-9.
Cheah UB, Kirkwood RC, Lum KY. Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pestic Sci. 1997;50(1):53-63.
Wilson DJ, Patton S, Florova G, Hale V, Reynolds KA. The shikimic acid pathway and polyketide biosynthesis. J Ind Microbiol Biotechnol. 1998 May 1;20(5):299-303.
Amrhein N, Johänning D, Smart CC. A Glyphosate-Tolerant Plant Tissue Culture. In: Neumann KH, Barz W, Reinhard E, editors. Primary and Secondary Metabolism of Plant Cell Cultures. Berlin, Heidelberg: Springer; 1985. p. 356-61. (Proceedings in Life Sciences).
Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol. 2021;23(6):2891-905.
Schulz A, Krüper A, Amrhein N. Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol Lett. 1985 Jul 1;28(3):297-301.
Pongraveevongsa P, Khobjai W, Wunnapuk K, Sribanditmongkol P. High-performance liquid chromatography/uv detection for determination of glyphosate in serum and gastric content. Chiang Mai Med J. 2008;47(4):155-62.
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergeys Man Determinative Bacteriol. 1994;
Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.
Aliyu FI, Ibrahim A, Babandi A, Shehu D, Ya'u M, Babagana K, et al. Glyphosate Biodegradation by Molybdenum-Reducing Pseudomonas sp. J Environ Microbiol Toxicol. 2022 Dec 31;10(2):42-7.
Mohy-Ud-Din W, Akhtar MJ, Bashir S, Asghar HN, Nawaz MF, Chen F. Isolation of Glyphosate-Resistant Bacterial Strains to Improve the Growth of Maize and Degrade Glyphosate under Axenic Condition. Agriculture. 2023 Apr;13(4):886.
Moore JK, Braymer HD, Larson AD. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol. 1983;46(2):316-20.
Penaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol. 1995;61(2):538-43.
Dick RE, Quinn JP. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett. 1995;134(2-3):177-82.
Benslama O, Boulahrouf A. Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria. Afr J Miicrbiology Res. 2013 Dec 11;7:5587-95.
Quinn JP, Peden JMM, Dick RE. Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol. 1989;31(3):283-7.
Dick RE, Quinn JP. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol. 1995 Jul;43(3):545-50.
Talbot HW, Johnson LM, Munnecke DM. Glyphosate utilization byPseudomonas sp. andAlcaligenes sp. isolated from environmental sources. Curr Microbiol. 1984 Sep 1;10(5):255-9.
Balthazor TM, Hallas LE. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986;51(2):432-4.
Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol. 2002;68(4):2081-4.
Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE, et al. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res. 2014 Jan 20;169(1):99-105.
Liu CM, McLean PA, Sookdeo CC, Cannon FC. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol. 1991;57(6):1799-804.
Peng RH, Tian YS, Xiong AS, Zhao W, Fu XY, Han HJ, et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PloS One. 2012;7(8):e39579.
Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, et al. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol. 2012;93(2):787-96.
Moneke AN, Okpala GN, Anyanwu CU. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol. 2010;9(26):4067-74.
Nourouzi MM, Chuah TG, Choong TSY, Rabiei F. Modeling biodegradation and kinetics of glyphosate by artificial neural network. J Environ Sci Health B. 2012;47(5):455-65.
Adams MR, Little CL, Easter MC. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J Appl Bacteriol. 1991;71(1):65-71.
Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs. 2011;9(1):29-42.
Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, et al. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol. 2012;58(4):263-71.
Sharifi Y, Pourbabaei AA, Javadi A, Abdolmohammad MH, Saffari M, Morovvati A. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake. Iran Env Health Eng Manag J. 2015;2(1):31-6.
Lerbs W, Stock M, Parthier B. Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch Microbiol. 1990;153(2):146-50.
Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health - Part B Pestic Food Contam Agric Wastes. 2013;48(3):208-13.
Somara S, Siddavattam D. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int. 1995;36(3):627-31.
Krzy?ko-?upicka T, Orlik A. Use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere. 1997;34(12):2601-5.
Manogaran M, Yasid NA, Ahmad SA. Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. J Biochem Microbiol Biotechnol. 2017 Jul 31;5(1):21-5.
Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY. Characterisation of the simultaneous molybdenum reduction and glyphosate degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. 3 Biotech. 2018 Feb 7;8(2):117.
Manogaran M, Shukor MY, Yasid NA, Johari WLW, Ahmad SA. Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei. 2017;28(3):471-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).