Modelling the Inhibitory Effect of Mercury on the Growth Rate of a Bacterium on Acrylamide

Authors

  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Syahir Habib Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Badrin Hanizam Abdul Rahim Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Umar Abubakar Muhammad Department of Biological Sciences, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Ibrahim A. Allamin Department of Microbiology, Faculty of Science, University of Maiduguri P.M.B 1069 Maiduguri, Nigeria.

DOI:

https://doi.org/10.54987/bessm.v7i1.899

Keywords:

Mercury, Acrylamide-degrading bacterium, Pseudomonas, Inhibition kinetics, Mathematical models

Abstract

Mercury was a potent inhibitor of the acrylamide-degrading Pseudomonas sp. strain DrY Kertih bacterium. The bacterium is capable of growing on acrylamide as a nitrogen source. Growth shows a sigmoidal pattern with lag times of 7–10 hours when exposed to increasing amounts of mercury. Bacterial growth was significantly slowed down while the lag period was increased as the concentration of mercury was increased to 0.1 mg/L, and eventually, growth stopped altogether. Growth rates at various mercury concentrations were calculated using a modified Gompertz model to obtain the maximum specific growth rate parameter. The modified Han-Levenspiel, modified Andrews, Shukor, Kai, Liu, Wang and Amor models were applied to the growth rates. The Amor model was unable to fit the curve. The Wang model performed the best statistically, with the lowest RMSE and AICc, the highest adjusted correlation coefficient (adR2), and AF and BF values closest to unity. The parameters obtained were Kc, max and m which represent critical heavy metal ion concentration (g/l), and maximum growth rate (g/l h) and empirical constant values were KC, max and m which represent inhibition constant (mg/L), maximum growth rate (per h) and empirical constant values were 0.054, 0.431 and 4.295, respectively. The results obtained in this study are useful when remediation works on polluted sites containing acrylamide co-contaminated with metal ions especially mercury.

References

Spencer P, Schaumburg HH. Nervous system degeneration produced by acrylamide monomer. Environ Health Perspect. 1975 Jun 1;11:129-33.

Sega GA, Valdivia Alcota RP, Tancongco CP, Brimer PA. Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat Res Mutagen Relat Subj. 1989 Aug 1;216(4):221-30.

Tyl RW, Friedman MA. Effects of acrylamide on rodent reproductive performance. Reprod Toxicol. 2003 Jan 1;17(1):1-13.

Yang HJ, Lee SH, Jin Y, Choi JH, Han CH, Lee MH. Genotoxicity and toxicological effects of acrylamide on reproductive system in male rats. J Vet Sci. 2005 Jun;6(2):103-9.

Backer LC, Dearfield KL, Erexson GL, Campbell JA, Westbrook?Collins B, Allen JW. The effects of acrylamide on mouse germ-line and somatic cell chromosomes. Environ Mol Mutagen. 1989;13(3):218-26.

Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001;27(4):219-26.

Igisu H, Goto I, Kawamura Y, Kato M, Izumi K. Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry. 1975;38(6):581-4.

Mottram, DS, Wedzicha BL, Dobson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419:448-9.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Wang J, Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34(8):3313-23.

Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):41-5.

Wang Y, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY. Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int J Hydrog Energy. 2008;33(4):1164-71.

Andrews JF. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng. 1968 Nov 1;10(6):707-23.

Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog. 2006;22(5):1265-75.

Kai E, Lutfi W, Wan Johari WL, Habib S, Yasid N, Aqlima S, et al. The growth of the Rhodococcus sp. on diesel fuel under the effect of heavy metals and different concentrations of zinc. Adv Polar Sci. 2020 Jun 1;31:132-6.

G?szczak A, Szczyrba E, Szczotka A, Gre? I. Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2. Materials. 2021 Jan;14(20):6058.

Amor L, Kennes C, Veiga MC. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol. 2001 Jun 1;78(2):181-5.

Gopinath KP, Kathiravan MN, Srinivasan R, Sankaranarayanan S. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol. 2011;102(4):3687-93.

Abubakar A, Uba G, Biu HA. Kinetics Modelling of Pseudomonas stutzeri strain DN2 Growth Behaviour in Tributyltin Chloride. J Environ Microbiol Toxicol. 2021 Dec 31;9(2):13-8.

Abubakar A. Kinetics Modelling of Tributyltin Toxicity on The Growth of Bacillus subtilis. J Biochem Microbiol Biotechnol. 2021 Jul 30;9(1):19-24.

Abubakar A, Ibrahim S, Garba IK, Tanko AS, Abdulrasheed M, Adamu A, et al. Kinetics Modelling of Tributyltin Toxicity on The Growth of Bacillus stearothermophilus. Bioremediation Sci Technol Res. 2020 Jul 31;8(1):7-10.

Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. strain Neni-13. Nova Biotechnol Chim. 2016;15(2):166-81.

Rusnam M, Gusmanizar N. Characterization of the growth on SDS by Enterobacter sp. strain Neni-13. J Biochem Microbiol Biotechnol. 2017 Dec 31;5(2):28-32.

Abubakar A, Gusmanizar N, Rusnam M, Syed MA, Shamaan NA, Shukor MY. Remodelling the Growth Inhibition Kinetics of Pseudomonas sp. Strain DrY Kertih on Acrylamide. Bioremediation Sci Technol Res. 2020 Dec 31;8(2):16-20.

Masdor N, Abd Shukor MS, Khan A, Bin Halmi MIE, Abdullah SRS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and SDS- degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment. Biodiversitas. 2015;16(2):238-46.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):42-4.

Aisami A, Gusmanizar N. Characterization of an acrylamide-degrading bacterium isolated from hydrocarbon sludge. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):15-9.

Wang Y, Fan Y, Gu JD. Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia. Int Biodeterior Biodegrad. 2004;53(2):93-101.

Wang GL, Li XF, Zhang H, Xiong MH, Li F. Optimization of CTN-4 to chlorothalonil-degrading conditions and a kinetics model. Zhongguo Huanjing KexueChina Environ Sci. 2013;33(11):1999-2005.

Mand TD, Döpfer D, Ingham B, Ané C, Kaspar CW. Growth and survival parameter estimates and relation to RpoS levels in serotype O157: H7 and non-O157 Shiga toxin-producing Escherichia coli. J Appl Microbiol. 2013;114(1):242-55.

Calvayrac C, Romdhane S, Barthelmebs L, Rocaboy E, Cooper JF, Bertrand C. Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. Int Biodeterior Biodegrad. 2014;91:104-10.

Augustine A, Imelda J, Paulraj R, David NS. Growth kinetic profiles of Aspergillus niger S14 a mangrove isolate and Aspergillus oryzae NCIM 1212 in solid state fermentation. Indian J Fish. 2015;62(3):100-6.

Christen P, Vega A, Casalot L, Simon G, Auria R. Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J. 2012;62:56-61.

Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ Sci Pollut Res. 2014;21(2):1444-54.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modeling of the growth kinetics of Bacillus sp. on tannery effluent containing chromate. J Environ Bioremediation Toxicol. 2014;2(1):6-10.

Ross T. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol. 1996;81(5):501-8.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian J Plant Biol. 2014;2(1):1-6.

Yin Y, Song W, Wang J. Inhibitory effect of acetic acid on dark-fermentative hydrogen production. Bioresour Technol. 2022 Nov 1;364:128074.

Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V. Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrog Energy. 2016 Jul 6;41(25):10639-45.

Gou C, Guo J, Lian J, Guo Y, Jiang Z, Yue L, et al. Characteristics and kinetics of biohydrogen production with Ni2+ using hydrogen-producing bacteria. Int J Hydrog Energy. 2015 Jan 5;40(1):161-7.

Wang J, Yin Y. Kinetic Models for Hydrogen Production. In: Wang J, Yin Y, editors. Biohydrogen Production from Organic Wastes [Internet]. Singapore: Springer; 2017 [cited 2023 Nov 7]. p. 269-90. (Green Energy and Technology). Available from: https://doi.org/10.1007/978-981-10-4675-9_6

Wang B, Wan W, Wang J. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrog Energy. 2008 Dec 1;33(23):7013-9.

Roane TM, Josephson KL, Pepper IL. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil. Appl Environ Microbiol. 2001 Jul;67(7):3208-15.

Babich H, Stotzky G. Effect of Cadmium on Fungi and on Interactions Between Fungi and Bacteria in Soil: Influence of Clay Minerals and pH. Appl Environ Microbiol. 1977 May;33(5):1059-66.

Kamel Z. Toxicity of cadmium to twoStreptomyces species as affected by clay minerals. Plant Soil. 1986 Jun 1;93(2):195-203.

Hettiarachchi GM, Pierzynski GM, Ransom MD. In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol. 2000;34(21):4614-9.

Downloads

Published

2023-07-31

How to Cite

Manogaran, M. ., Habib, S., Rahim, M. B. H. A., Abubakar, A., Muhammad, U. A. ., & Allamin, I. A. . (2023). Modelling the Inhibitory Effect of Mercury on the Growth Rate of a Bacterium on Acrylamide. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(1), 26–31. https://doi.org/10.54987/bessm.v7i1.899

Issue

Section

Articles