Isolation and Characterization of a Diesel-degrading Bacterium from Waters Near the Langkawi UNESCO Kilim Karst Geoforest Park

Authors

  • Mohd Khalizan Sabullah Faculty of Science and Natural Resources,Universiti Malaysia Sabah, Jalan Ums, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Mohd Yunus Shukor Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v7i1.897

Keywords:

Isolation, Characterization, Diesel-degrading, Pseudomonas sp., Langkawi UNESCO site

Abstract

This study explored the biodegradation potential of bacterial isolates from various locations in Malaysia, focusing on their ability to utilize diesel as a carbon source. Among the ten isolates tested, Isolate 4, identified as Pseudomonas sp. strain UPM-Langkawi 3 based on morphological, cultural, and biochemical properties, exhibited significant growth on 2.5% diesel, indicating rapid activation of diesel assimilation mechanisms. Using ABIS online software analysis, the strain was provisionally identified as Pseudomonas sp. UPM-Langkawi 3. Experimental results demonstrated that the optimal conditions for the growth of strain UPM-Langkawi 3 were between 6 and 8 % (v/v) diesel concentration, a temperature of between 28 and 35 °C, and a pH range of between 7.5 to 8.5. The strain showed inhibited growth at higher diesel concentrations and temperatures above 40°C and at a lower pH of 5.7. Among several inorganic nitrogen sources tested, 0.9% w/v ammonium sulphate was found to be the most effective, corroborating previous research. The study underscores the efficacy of Pseudomonas sp. strain UPM-Langkawi 3 in degrading diesel, suggesting its potential use in bioremediation of diesel-contaminated environments. Further research should employ molecular identification techniques, such as 16srRNA gene sequencing, to confirm the species identity and optimize biodegradation conditions. This work establishes a foundation for utilizing indigenous bacterial strains in environmental management strategies, particularly for areas impacted by hydrocarbon pollutants.

References

Usman S, Yakasai HM, Gimba MY, Shehu D, Jagaba AH. Anthracene degradation by Achromobacter xylosoxidans strain BUK_BTEG6 isolated from petrochemical contaminated soil. Case Stud Chem Environ Eng. 2023 Dec 1;8:100418.

Yusuf F, Muhammad JB, Usman S, Jagaba AH, Yusuf MR, Yakasai HM. Biodegradation of dimethyl yellow by a locally isolated fungus from dye contaminated wastewater. Case Stud Chem Environ Eng. 2024 Jun 1;9:100650.

Harun FA, Yusuf MR, Usman S, Shehu D, Babagana K, Sufyanu AJ, et al. Bioremediation of lead contaminated environment by Bacillus cereus strain BUK_BCH_BTE2: Isolation and characterization of the bacterium. Case Stud Chem Environ Eng. 2023 Dec 1;8:100540.

Chaturvedi A, Rai BN, Singh RS, Jaiswal RP. A Computational Approach to Incorporate Metabolite Inhibition in the Growth Kinetics of Indigenous Bacterial Strain Bacillus subtilis MN372379 in the Treatment of Wastewater Containing Congo Red Dye. Appl Biochem Biotechnol. 2021 Jul 1;193(7):2128-44.

Tiong B, Bahari ZM, Irwan SL, Jaafar J, Ibrahim Z, Shahir S. Cyanide degradation by Pseudomonas pseudoalcaligenes strain W2 isolated from mining effluent. Sains Malays. 2015;44(2):233-8.

Sajjaphan K, Heepngoen P, Sadowsky MJ, Boonkerd N. Arthrobacter sp. strain KU001 isolated from a Thai soil degrades atrazine in the presence of inorganic nitrogen sources. J Microbiol Biotechnol. 2010;20(3):602-8.

Margesin R a d, Labbé D b, Schinner F a, Greer CW b, Whyte LG b c. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol. 2003;69(6):3085-92.

Struthers JK, Jayachandran K, Moorman TB. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol. 1998;64(9):3368-75.

Káš J a, Burkhard J a, Demnerová K a, KošT'Ál J a, Macek T b, Macková M a, et al. Perspectives in biodegradation of alkanes and PCBs. Pure Appl Chem. 1997;69(11):2357-69.

DOE. Malaysia Environmental Quality Report 2017. Department of Environment, Ministry of Natural Resources and Environment, Malaysia; 2018.

Qu X, Meng Q. The economic importance of the Straits of Malacca and Singapore: An extreme-scenario analysis. Transp Res Part E Logist Transp Rev. 2012 Jan 1;48(1):258-65.

Shukor MY, Hassan NAA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, et al. Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. J Environ Biol. 2009;30(1):1-6.

Mohamed B. Effects of tourism activities and development on the physical environment of Kilim River, Langkawi, Malaysia. Malays For. 2012 Jan 1;75:81-6.

Tajam J, Kamal mohd lias. Marine Environmental Risk Assessment of Sungai Kilim, Langkawi, Malaysia: Heavy Metal Enrichment Factors in Sediments as Assessment Indexes. Int J Oceanogr. 2013 Jan 1;2013.

Tyler L. Trouble in paradise: Langkawi struggles to hold onto Unesco geopark status [Internet]. South China Morning Post. 2014 [cited 2024 Apr 6]. Available from: https://www.scmp.com/magazines/post-magazine/article/1577608/langkawi-victim-its-own-success

Idris SMM. Mangrove forest in Kilim Geo Park under threat [Internet]. Free Malaysia Today. 2016 [cited 2024 Apr 6]. Available from: https://www.freemalaysiatoday.com/category/opinion/2016/05/27/mangrove-forest-in-kilim-geo-park-under-threat/

Lee LM. Langkawi getting trashed [Internet]. R.AGE. 2016 [cited 2024 Apr 6]. Available from: https://www.rage.com.my/langkawi-getting-trashed/

Halim M, Ahmad A, Abd Rahman M, Mat Amin Z, Abdul Khanan MF, Musliman I, et al. Land use/land cover mapping for conservation of UNESCO Global Geopark using object and pixel-based approaches. IOP Conf Ser Earth Environ Sci. 2018 Jul 31;169:012075.

Chiu T, Khan M, Latif MT, Mohd Nadzir MS, Abd Hamid HH, Yusoff A, et al. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of Langkawi Island, Malaysia. Sains Malays. 2018 May 31;47:871-82.

Palmer TA, Klein AG, Sweet ST, Montagna PA, Hyde LJ, Wade TL, et al. Anthropogenic effects on the marine environment adjacent to Palmer Station, Antarctica. Antarct Sci. 2022 Feb;34(1):79-96.

Mohanta S, Pradhan B, Behera ID. Impact and Remediation of Petroleum Hydrocarbon Pollutants on Agricultural Land: A Review. Geomicrobiol J. 2024 Apr 1;41(4):345-59.

Ossai IC, Ahmed A, Hassan A, Hamid FS. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ Technol Innov. 2020 Feb 1;17:100526.

Troquet J, Larroche C, Dussap CG. Evidence for the occurrence of an oxygen limitation during soil bioremediation by solid-state fermentation. Biochem Eng J. 2003 Mar 1;13(2):103-12.

Agah H, Shadi R, Eslami Z, Raihanizadeh A. Distribution pattern and ecological risk assessment of heavy metals and PAHs in sediments of the entrance of Musa estuary, Persian Gulf to establish desalination plant. Reg Stud Mar Sci [Internet]. 2023;57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143139397&doi=10.1016%2fj.rsma.2022.102725&partnerID=40&md5=1eb103344070ba40a8cc7dc89afde131

Cappuccino JG, Sherman N. Microbiology: A laboratory manual. 6th ed. San Francisco: Pearson Education Inc; 2002.

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology. 9th ed. Lippincott Williams & Wilkins; 1994.

Chaîneau CH, Morel J, Dupont J, Bury E, Oudot J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ. 1999;227(2-3):237-47.

Chayabutra C, Ju LK. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol. 2000;66(2):493-8.

Salam LB, Obayori OS, Akashoro OS, Okogie GO. Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. Int J Agric Biol. 2011;13(2):245-50.

Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol. 2011;102(5):4111-6.

Allamin IA, Ijah UJJ, Ismail HY, Riskuwa ML. Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State. Int J Environ. 2014 May 29;3(2):36-47.

Attar AZ, Jaoua S, Ahmed TA, Al Disi Z, Zouari N. Evidencing the diversity and needs of adjustment of the nutritional requirements for hydrocarbon-degrading activity of: Pseudomonas aeruginosa adapted to harsh conditions using 2 n full factorial design. RSC Adv. 2017;7(73):45920-31.

Saidu K, Baba A, Atta H. Diesel-Degrading Potential of Pseudomonas putida Isolated from Effluent of a Petroleum Refinery in Nigeria. UMYU J Microbiol Res UJMR. 2019 Dec 1;4:105-12.

Shettima H, Allamin IA, Halima N, Ismail HY, Musa Y. Isolation and Characterization of Hydrocarbon-degrading Bacteria in Soils of Mechanical Workshops in Maiduguri, Borno State. J Environ Bioremediation Toxicol. 2021 Dec 31;4(2):35-8.

Fardami AY, Kawo AH, Yahaya S, Riskuwa-Shehu ML, Lawal I, Ismail HY. Isolation and Screening of Biosurfactant-producing Bacteria from Hydrocarbon-contaminated Soil in Kano Metropolis, Nigeria. J Biochem Microbiol Biotechnol. 2022 Jul 31;10(1):52-7.

Das N, Chandran P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol Res Int. 2010 Sep 13;2011:941810.

Narwal SK, Gupta R. Biodegradation of Xenobiotic Compounds: An Overview. In: Handbook of Research on Inventive Bioremediation Techniques [Internet]. IGI Global; 2017 [cited 2024 Apr 22]. p. 186-212. Available from: https://www.igi-global.com/chapter/biodegradation-of-xenobiotic-compounds/www.igi-global.com/chapter/biodegradation-of-xenobiotic-compounds/176463

Curiel-Alegre S, Velasco-Arroyo B, Rumbo C, Khan AHA, Tamayo-Ramos JA, Rad C, et al. Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere. 2022 Nov 1;307:135638.

Bicca FC, Fleck LC, Ayub MAZ. Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol. 1999;30(3):231-6.

Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012;28(5):2057-67.

Pranowo PP, Titah HS. Isolation and screening of diesel-degrading bacteria from the diesel contaminated seawater at Kenjeran Beach, Surabaya. EnvironmentAsia. 2016;9(2):165-9.

Hong JH, Kim J a, Choi OK, Cho KS a, Ryu HW. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol. 2005;21(3):381-4.

Arabo AA, Bamanga RA, Fadilu M, Abubakar M, Shehu FA, Yakasai HM, et al. Isolation and Characterization of Biosurfactant-producing Alcaligenes sp. YLA11 and its Diesel Degradation Potentials. Bioremediation Sci Technol Res. 2021 Dec 31;9(2):7-12.

Abubakar YU, Taura DW, Muhammad BA, Ibrahim TS, Njobdi AB, Umar M, et al. In situ biodegradation of diesel by bacteria isolated from Broilers Chicken droppings. Adv Pharm J, 2020; 5(5):164-171. Adv Pharm J. 2020;5(5):164-71.

Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Mukhlisin M, et al. Biodegradation of diesel by bacteria isolated from Scirpus mucronatus rhizosphere in diesel-contaminated sand. Adv Sci Lett. 2015;21(2):140-3.

Agarry S, Latinwo GK. Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J Ecol Eng. 2015 Feb 8;16(2):82-91.

Vázquez S, Nogales B, Ruberto L, Mestre C, Christie-Oleza J, Ferrero M, et al. Characterization of bacterial consortia from diesel-contaminated Antarctic soils: Towards the design of tailored formulas for bioaugmentation. Int Biodeterior Biodegrad. 2013;77:22-30.

Kwapisz E, Wszelaka J, Marchut O, Bielecki S. The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7. Int Biodeterior Biodegrad. 2008;61(3):214-22.

Márquez-Rocha FJ, Olmos-Soto J, Concepción Rosano-Hernández M, Muriel-García M. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int Biodeterior Biodegrad. 2005 Jan;55(1):17-23.

Yakasai HM, Safiyanu AJ, Ibrahim S, Babandi A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on Molybdenum Reduction Rate by Pantoea sp. strain HMY-P4. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):16-20.

Margesin R. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegrad. 2000;46(1):3-10.

Chapman PJ, Shelton M. Fossil fuel biodegradation, laboratory studies. Environ Health Perspect. 1995;1035:1-7.

Lee M a b, Kim MK a d, Kwon MJ b, Park BD b, Kim MH c, Goodfellow M d, et al. Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng. 2005;100(4):429-36.

Atlas RM, Cerniglia CE. Bioremediation of petroleum pollutants. BioScience. 1995;45(5):332-8.

Hayakawa K, Nomura M, Nakagawa T, Oguri S, Kawanishi T, Toriba A, et al. Damage to and recovery of coastlines polluted with C-heavy oil spilled from the Nakhodka. Water Res. 2006 Mar 1;40(5):981-9.

Kang SW, Kim YB, Shin JD, Kim EK. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol. 2010;160(3):780-90.

Bharali P, Singh SP, Bashir Y, Dutta N, Konwar BK, Singh CB. Characterization and assessment of biosurfactant producing indigenous hydrocarbonoclastic bacteria: Potential application in bioremediation. Nova Biotechnol Chim. 2018;17(2):103-14.

Downloads

Published

2023-07-31

How to Cite

Sabullah, M. K. ., Yakasai, H. M. ., Manogaran, M. ., & Shukor, M. Y. (2023). Isolation and Characterization of a Diesel-degrading Bacterium from Waters Near the Langkawi UNESCO Kilim Karst Geoforest Park. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(1), 19–25. https://doi.org/10.54987/bessm.v7i1.897

Issue

Section

Articles