The Effect of Temperature on the Specific Growth Rate of Bacillus circulans strain Neni-10 on Metanil Yellow: Determination of Activation energy, Temperature Coefficient and Q10 Value

Authors

  • . Rusnam Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Fachri Ibrahim Nasution Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.

DOI:

https://doi.org/10.54987/bessm.v7i1.792

Keywords:

Metanil Yellow, Bacillus circulans, Activation energy, Arrhenius plot, Breakpoint

Abstract

bioremediation process, analyzing the effect of temperature to the specific growth values of a remediating microbes on a particular xenobiotic will yield important information that can be translated into the field in future studies. Due to their tiny size, microbes are particularly very sensitive to variations in temperature. Temperature typically influences the growth and metabolic activity of bacterium on the substrates they are grown upon. There are several models that may be utilized to mimic the rate of growth of microbes on a numerous plethora of substrate or media at varying temperatures. Among the most often adopted models is the Arrhenius model, in part because to its minimal parameter number. To study the effect of temperature on Bacillus circulans strain Neni-10 growth on Metanil Yellow, a chevron-like graph with a discontinuous apparent activation energy was observed. The graph's exhibited a breakpoint at 31.91 °C. Per the regression analysis obtained, the activation energy needed for growth on Metanil Yellow at temperatures ranging between 20 and 30 °C was 62.07 kJ/mol. At temperatures ranging from 35 to 45 °C, its activation energy reduces to 30.93 kJ/mol. At a temperature of 35 °C, the maximum growth rate of the bacterium on Metanil Yellow occurred, and this rate was found to be reduced as the temperature was increased.

References

Lazim ZM, Zulkifli NS, Hadibarata T, Yusop Z. Removal of cresol red and reactive black 5 dyes by using spent tea leaves and sugarcane baggase powder. J Teknol. 2015;74(11):147-51.

Johari WLW, Isa RIM, Ghazali N, Arif NM, Shukor MYA. Decolorization of azo dyes by local microorganisms. In: Aris AZ, Ismail THT, Harun R, Abdullah AM, Ishak MY, editors. From Sources to Solution [Internet]. 2014 [cited 2014 Jul 6]. p. 357-61. Available from: http://link.springer.com/chapter/10.1007/978-981-4560-70-2_65

Anjaneya O, Souche SY, Santoshkumar M, Karegoudar TB. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater. 2011;190(1-3):351-8.

Singh RK, Kumar S, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40(2):293-303.

Ohtake H, Fujii E, Toda K. Bacterial Reduction of Hexavalent Chromium: Kinetic Aspects of Chromate Reduction by Enterobacter cloacae HO1. Biocatalysis. 1990 Jan 1;4(2-3):227-35.

Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J Appl Bacteriol. 1991;71(5):452-9.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006 Nov 1;22(11):1205-13.

Gafar AA, Manogaran M, Yasid NA, Halmi MIE, Shukor MY, Othman AR. Arrhenius plot analysis, temperature coefficient and Q10 value estimation for the effect of temperature on the growth rate on acrylamide by the Antarctic bacterium Pseudomonas sp. strain DRYJ7. J Environ Microbiol Toxicol. 2019 Jul 31;7(1):27-31.

Shukor MY. Arrhenius Plot Analysis of the Temperature Effect on the Biodegradation Rate of 2-chloro-4-nitrophenol. Biog J Ilm Biol. 2020 Dec 30;8(2):219-24.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Serratia marcescens strain DRY6. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):21-6.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Acinetobacter calcoaceticus strain Dr Y12. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):20-6.

Uba G, Yakasai HM, Babandi A, Ya'u M, Mansur A. The Effect of Temperature on the Rate of Molybdenum Reduction by Enterobacter sp. strain Dr.Y13: Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):1-6.

Yakasai HM, Safiyanu AJ, Ibrahim S, Babandi A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on Molybdenum Reduction Rate by Pantoea sp. strain HMY-P4. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):16-20.

Reardon KF, Mosteller DC, Bull Rogers JD. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F 1. Biotechnol Bioeng. 2000;69(4):385-400.

Angelova B, Avramova T, Stefanova L, Mutafov S. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation. 2008;19(3):387-93.

Onysko KA, Budman HM, Robinson CW. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol Bioeng. 2000 Nov 5;70(3):291-9.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van't Riet K. Modeling of bacterial growth as a function of temperature. Appl Environ Microbiol. 1991 Apr;57(4):1094-101.

Mansur R, Gusmanizar N, Roslan MAH, Ahmad SA, Shukor MY. Isolation and characterisation of a molybdenum-reducing and Metanil yellow dye-decolourising Bacillus sp. strain Neni-10 in soils from West Sumatera, Indonesia. Trop Life Sci Res. 2017 Jan;28(1):69-90.

Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Für Phys Chem. 1889 Jan 1;

Aisami A, Yasid NA, Johari WLW, Shukor MY. Estimation of the Q10 value; the temperature coefficient for the growth of Pseudomonas sp. aq5-04 on phenol. Bioremediation Sci Technol Res. 2017 Jul 31;5(1):24-6.

Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology. 2005;151(12):4139-51.

Benedek P, Farkas P. Influence of temperature on the reactions of the activated sludge process. In: Murphy RS, Nyquist D, Neff PW, editors. Proceedings of the international symposium on water pollution control in cold climates. University of Alaska, Washington, DC: Environmental Protection Agency; 1970.

Reynolds JH, Middlebrooks EJ, Procella DB. Temperature-toxicity model for oil refinery waste. J Environ Eng Div. 1974;100(3):557-76.

Melin ES, Jarvinen KT, Puhakka JA. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res. 1998 Jan 1;32(1):81-90.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. Modeling biodegradation of nonylphenol. Water Air Soil Pollut Focus. 2008 Aug 1;8(3-4):395-404.

Bandyopadhyay SK, Chatterjee K, Tiwari RK, Mitra A, Banerjee A, Ghosh KK, et al. Biochemical studies on molybdenum toxicity in rats: effects of high protein feeding. Int J Vitam Nutr Res. 1981;51(4):401-9.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Guo J, Lian J, Xu Z, Xi Z, Yang J, Jefferson W, et al. Reduction of Cr(VI) by Escherichia coli BL21 in the presence of redox mediators. Bioresour Technol. 2012 Nov 1;123:713-6.

Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech. 2012 Mar;2(1):79-87.

Zhao R, Guo J, Song Y, Chen Z, Lu C, Han Y, et al. Mediated electron transfer efficiencies of Se(IV) bioreduction facilitated by meso-tetrakis (4-sulfonatophenyl) porphyrin. Int Biodeterior Biodegrad. 2020 Feb 1;147:104838.

dos Santos AB, Cervantes FJ, van Lier JB. Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Appl Microbiol Biotechnol. 2004 Mar;64(1):62-9.

Dafale N, Wate S, Meshram S, Nandy T. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. J Hazard Mater. 2008 Nov 30;159(2):319-28.

Chen G, Huang M hong, Chen L, Chen D hui. A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. Int Biodeterior Biodegrad. 2011 Sep 1;65(6):790-6.

Chang JS, Kuo TS. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol. 2000 Nov 1;75(2):107-11.

Behzat B. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa. Water Sci Technol. 2015 Jul 6;72(8):1266-73.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006;22(11):1205-13.

Srivastava A, Rani R, Kumar S. Optimization, kinetics, and thermodynamics aspects in the biodegradation of reactive black 5 (RB5) dye from textile wastewater using isolated bacterial strain, Bacillus albus DD1. Water Sci Technol. 2022 Jul 11;86(3):610-24.

Han MH. Non-linear Arrhenius plots in temperature-dependent kinetic studies of enzyme reactions: I. Single transition processes. J Theor Biol. 1972 Jun 1;35(3):543-68.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Stannard CJ, Williams AP, Gibbs PA. Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiol. 1985;2(2):115-22.

McMeekin TA, Chandler RE, Doe PE, Garland CD, Olley J, Putro S, et al. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J Appl Bacteriol. 1987;62(6):543-50.

Fernández A, Collado J, Cunha LM, Ocio MJ, Martínez A. Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. Int J Food Microbiol. 2002;77(1-2):147-53.

Ucun H, Bayhan YK, Kaya Y. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn. J Hazard Mater. 2008 May 1;153(1):52-9.

Tchobanoglous G, Schoeder ED. Water quality: Characteristics, modeling and modification. 1 edition. Reading, Mass: Pearson; 1985. 780 p.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Melin ES, Ferguson JF, Puhakka JA. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Appl Microbiol Biotechnol. 1997 Jun 1;47(6):675-82.

Kuhn HJ, Cometta S, Fiechter A. Effects of growth temperature on maximal specific growth rate, yield, maintenance, and death rate in glucose-limited continuous culture of the thermophilic Bacillus caldotenax. Eur J Appl Microbiol Biotechnol. 1980;10(4):303-15.

Ceuterick F, Peeters J, Heremans K, De Smedt H, Olbrechts H. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. Eur J Biochem. 1978;87(2):401-7.

Mutafov SB, Minkevich IG. Temperarture effect on the growth of Candida utilis VLM-Y-2332 on ethanol. Comptes Rendus Acad Bulg Sci. 1986;39:71-4.

Funamizu N, Takakuwa T. Simulation analysis of operating conditions for a municipal wastewater treatment plant at low temperatures. In: Margesin R, Schinner F, editors. Biotechnological Applications of Cold-Adapted Organisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 203-20.

Yakasai HM, Yasid NA, Shukor MY. Temperature Coefficient and Q10 Value Estimation for the Growth of Molybdenum-reducing Serratia sp. strain HMY1. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):22-4.

Gibbs CF, Davis SJ. The rate of microbial degradation of oil in a beach gravel column. Microb Ecol. 1976 Mar 1;3(1):55-64.

Malina G, Grotenhuis JTC, Rulkens WH. The effect of temperature on the bioventing of soil contaminated with toluene and decane. J Soil Contam. 1999 Jul 1;8(4):455-80.

Oh YS, Kim SJ. Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon. Korean J Microbiol Korea R. 1989;26(4):339-47.

Kim BY, Hyun HH. Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng. 2002 Aug 1;7(4):194.

Atlas RM, Bartha R. Fate and effects of polluting petroleum in the marine environment. In: Gunther FA, editor. Residue Reviews. Springer New York; 1973. p. 49-85. (Residue Reviews).

Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extrem Life Extreme Cond. 2005 Dec;9(6):461-70.

Bagi A, Pampanin DM, Brakstad OG, Kommedal R. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q10 approach. Mar Environ Res. 2013 Aug;89:83-90.

Downloads

Published

2023-07-31

How to Cite

Rusnam, ., Nasution, F. I., Shukor, M. Y., & Abubakar, A. (2023). The Effect of Temperature on the Specific Growth Rate of Bacillus circulans strain Neni-10 on Metanil Yellow: Determination of Activation energy, Temperature Coefficient and Q10 Value. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 7(1), 1–6. https://doi.org/10.54987/bessm.v7i1.792

Issue

Section

Articles