Isolation and Characterization of a Molybdenum-reducing Enterobacter aerogenes strain Amr-18 in Soils from Egypt that Could Grow on Amides

Authors

  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Mohd Fadhil Abd Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Fadhil Abd Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mahmoud Abd EL-Mongy Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
  • Mahmoud Abd EL-Mongy Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
  • Nor Aripin Shamaan Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 55100 USIM, Kuala Lumpur, Malaysia.
  • Chaing Hin Lee Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Arif Syed Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v6i2.747

Keywords:

Acrylamide, Bioremediation, Enterobacter aerogenes, Molybdenum-reducing bacterium, heavy metal

Abstract

In the foreseeable future, bioremediation is by far the most cost-effective method for removing noxious chemical toxins and organic contaminants, especially at low concentrations when other methods like physical or chemical procedures wouldn't be successful. For the objective of bioremediation, we have isolated a molybdenum-reducing bacteria from agricultural soil. The ideal pH and temperature ranges for the bacterium to reduce molybdate to molybdenum blue (Mo-blue) are 6.3 and 6.8, respectively. The best electron donor for molybdate reduction was glucose, which was followed in descending order by sucrose, lactose, l-rhamnose, d-mannose, raffinose, d-adonitol, maltose, d-mannitol, melibiose, cellobiose, glycerol, and d-sorbitol. Phosphate concentrations of 7.5 mM and molybdate concentrations of 15 – 20 mM are also necessary. The Mo-blue that was formed had an absorption spectrum that was comparable to that of earlier Mo-reducing bacteria and closely resembled that of reduced phosphomolybdate. At 2 ppm, copper (II), mercury (I), and silver I hindered molybdenum reduction by 80.2, 74.8, and 30.4%, respectively. The bacterium was tentatively identified as Enterobacter aerogenes strain Amr-18 after phenotypic and biochemical identifications. The bacterium could thrive on the amides, acrylamide, acetamide, and propionamide and could use acrylamide as an electron donor for molybdenum reduction. This bacterium has a highly valued trait that makes it useful for bioremediation: the capacity to detoxify a variety of toxicants.

References

Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut. 2001;128(1-2):85-96.

Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, et al. Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquat Toxicol. 2007;83(1):43-51.

Zhang Y-L, Liu F-J, Chen X-L, Zhang Z-Q, Shu R-Z, Yu X-L, et al. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med. 2013;59(6):312-8.

Underwood EJ. Environmental sources of heavy metals and their toxicity to man and animals. 1979;11(4-5):33-45.

Kincaid RL. Toxicity of ammonium molybdate added to drinking water of calves. J Dairy Sci. 1980;63(4):608-10.

Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, et al. Microbiological Reduction of Molybdenum to Molybdenum Blue as a Sustainable Remediation Tool for Molybdenum: A Comprehensive Review. Int J Environ Res Public Health Rev. 2021;18(5731):1-25.

Lim KT, Shukor MY, Wasoh H. Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int. 2014;2014.

Chirwa EN, Wang Y-T. Simultaneous chromium(VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res. 2000;34(8):2376-84.

Chung J, Rittmann BE, Wright WF, Bowman RH. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor. Biodegradation. 2007;18(2):199-209.

Rahim MBH, Syed MA, Shukor MY. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP. J Basic Microbiol. 2012;52(5):573-81.

Svensson K, Abramsson L, Becker W, Glynn A, Hellenäs K-E, Lind Y, et al. Dietary intake of acrylamide in Sweden. Food Chem Toxicol. 2003;41(11):1581-6.

Smith EA, Prues SL, Oehme FW. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: Temperature, light, and pH. Ecotoxicol Environ Saf. 1996;35(2):121-35.

Rogacheva SM, Ignatov OV. The respiratory activity of Rhodococcus rhodochrous M8 cells producing nitrile-hydrolyzing enzymes. Appl Biochem Microbiol. 2001;37(3):282-6.

Bunawan A. A thesis submitted in partial fulfilment of the requirement for the degree of Master of Science. Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia. 2015.

Haley CL, Colmer-Hamood JA, Hamood AN. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium. BMC Microbiol. 2012;12.

Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr. Y9. Pol J Microbiol. 2009;58(2):141-7.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology. 9th ed. Lippincott Williams & Wilkins; 1994.

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):42-4.

Campbell AM, Del Campillo-Campbell A, Villaret DB. Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc Natl Acad Sci U S A. 1985;82(1):227-31.

Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AKM, Tano T, et al. Isolation and characterization of a Mo6+-reducing bacterium. Appl Environ Microbiol. 1993;59(4):1176-80.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. J Biol Sci. 2007;7(8):1448-52.

Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, et al. Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr. Y6. Appl Biochem Biotechnol. 2008;149(1):33-43.

Rahman MFA, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol. 2009;30(1):65-72.

Shukor MY, Rahman MF, Shamaan NA, Syed MS. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J Basic Microbiol. 2009;49(SUPPL. 1):S43-54.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Bacterial reduction of hexavalent molybdenum to molybdenum blue. World J Microbiol Biotechnol. 2009;25(7):1225-34.

Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp. strain DRY2. J Appl Microbiol. 2010;108(6):2050-8.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol (Praha). 2010;55(2):137-43.

Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol. 2012;52(3):296-305.

Abo-Shakeer LKA, Ahmad SA, Shukor MY, Shamaan NA, Syed MA. Isolation and characterization of a molybdenum-reducing Bacillus pumilus strain lbna. J Environ Microbiol Toxicol. 2013;1(1):9-14.

Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA. Molybdate reduction to molybdenum blue by an antarctic bacterium. BioMed Res Int. 2013;2013.

Halmi MIE, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al. Hexavalent molybdenum reduction to Mo-blue by a Sodium-Dodecyl-Sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Res Int. 2013;2013:e384541.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013.

Khan A, Halmi MIE, Shukor MY. Isolation of Mo-reducing bacterium in soils from Pakistan. J Environ Microbiol Toxicol. 2014;2(1):38-41.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Iyamu EW, Asakura T, Woods GM. A colorimetric microplate assay method for high-throughput analysis of arginase activity in vitro. Anal Biochem. 2008;383(2):332-4.

Chen X, Sun G, Xu M. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J Appl Microbiol. 2011;110(2):580-6.

Uddin MS, Zhou J, Qu Y, Guo J, Wang P, Zhao LH. Biodecolorization of azo dye acid red B under high salinity condition. Bull Environ Contam Toxicol. 2007;79(4):440-4.

Auffret MD, Yergeau E, Labbé D, Fayolle-Guichard F, Greer CW. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. 2014.

Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad. 2011;65(7):961-71.

Karamba KI, Yakasai HM. Growth Characterization of Bacillus amyloliquefaciens strain KIK-12 on SDS. J Biochem Microbiol Biotechnol. 2019;7(1):26-30.

Sedighi M, Vahabzadeh F. Kinetic Modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha. Biotechnol Bioprocess Eng. 2014;19(2):239-49.

Raj J, Prasad S, Sharma NN, Bhalla TC. Bioconversion of Acrylonitrile to Acrylamide using Polyacrylamide Entrapped Cells of Rhodococcus rhodochrous PA-34. Folia Microbiol (Praha). 2010;55(5):442-6.

Steiert JG, Pignatello JJ, Crawford RL. Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1987;53(5):907-10.

Losi ME, Jr WTF. Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a-1: Reduction of selenate to selenite. Environ Toxicol Chem. 1997;16(9):1851-8.

Llovera S, Bonet R, Simon-Pujol MD, Congregado F. Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl Environ Microbiol. 1993;59(10):3516-8.

Carpentier W, Smet LD, Beeumen JV, Brigé A. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol. 2005;187(10):3293-301.

Yoshimura K, Ishii M, Tarutani T. Microdetermination of phosphate in water by gel-phase colorimetry with molybdenum blue. Anal Chem. 1986;58(3):591-4.

Yakasai HM, Karamba KI, Yasida NA, Halmid MIE, Rahmana MF, Ahmad SA, et al. Response surface-based optimization of a novel molybdenum-reducing and cyanide-degrading Serratia sp. strain HMY1. Desalination Water Treat. 2019;145: 220-31.

Alhassan AY, Babandi A, Ibrahim S, Uba G, Yakasai HM. Isolation and Characterization of Molybdenum-reducing Pseudomonas sp. from Agricultural Land in Northwest-Nigeria. J Biochem Microbiol Biotechnol. 2020;8(1):23-8.

Shukor MY, Halmi MIE, Rahman MFA, Shamaan NA, Syed MA. Molybdenum reduction to molybdenum blue in Serratia sp. strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme. BioMed Res Int. 2014;2014.

Idris D, Gafasa MA, Ibrahim SS, Babandi A, Shehu D, Ya'u M, et al. Pantoea sp. strain HMY-P4 Reduced Toxic Hexavalent Molybdenum to Insoluble Molybdenum Blue. J Biochem Microbiol Biotechnol. 2019;7(1):31-7.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. 2007;7(8):1448-52.

Shukor MY, Lee CH, Omar I, Karim MIA, Syed MA, Shamaan NA. Isolation and characterization of a molybdenum-reducing enzyme in Enterobacter cloacae strain 48. Pertanika J Sci Technol. 2003;11(2):261-72.

Shen H, Wang Y-T. Biological reduction of chromium by E. coli. J Environ Eng. 1994;120(3):560-72.

Opperman DJ, Piater LA, Van Heerden E. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol. 2008;190(8):3076-82.

Elangovan R a, Philip L a, Chandraraj K b. Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol. 2010;160(1):81-97.

Glenn JL, Crane FL. Studies on metalloflavoproteins. V. The action of silicomolybdate in the reduction of cytochrome c by aldehyde oxidase. Biochim Biophys Acta. 1956;22(1):111-5.

Sims RPA. Formation of heteropoly blue by some reduction procedures used in the micro-determination of phosphorus. 1961;86(1026):584-90.

Shukor MY, Shamaan NA, Syed MA, Lee CH, Karim MIA. Characterization and quantification of molybdenum blue production in Enterobacter cloacae strain 48 using 12-molybdophosphate as the reference compound. Asia-Pac J Mol Biol Biotechnol. 2000;8(2):167-72.

Runnells DD, Kaback DS, Thurman EM. Geochemistry and sampling of molybdenum in sediments, soils, and plants in Colorado. In: Chappel WR, Peterson KK, editors. Molybdenum in the environment. New York: Marcel and Dekker, Inc.; 1976.

Shukor MY, Syed MA, Lee CH, Karim MIA, Shamaan NA. A method to distinguish between chemical and enzymatic reduction of molybdenum in Enterobacter cloacae strain 48. Malays J Biochem. 2002;7: 71-2.

Sugiura Y, Hirayama Y. Structural and electronic effects on complex formation of copper(II) and nickel(II) with sulfhydryl-containing peptides. Inorg Chem. 1976;15(3):679-82.

Zeng G-M, Tang L, Shen G-L, Huang G-H, Niu C-G. Determination of trace chromium(VI) by an inhibition-based enzyme biosensor incorporating an electropolymerized aniline membrane and ferrocene as electron transfer mediator. Int J Environ Anal Chem. 2004;84(10):761-74.

Anu M, Salom Gnana TV, Reshma JK. Simultaneous phenol degradation and chromium (VI) reduction by bacterial isolates. Res J Biotechnol. 2010;5(1):46-9.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Environ Biol. 2009;30(1):57-64.

Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J Environ Biol. 2009;30(1):107-12.

Syed MA, Ahmad SA, Kusnin N, Shukor MYA. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27. Afr J Biotechnol. 2012;11(2):329-36.

Jebasingh SEJ, Lakshmikandan M, Rajesh RP, Raja P. Biodegradation of acrylamide and purification of acrylamidase from newly isolated bacterium Moraxella osloensis MSU11. Int Biodeterior Biodegrad. 2013;85: 120-5.

Liu Z-H, Cao Y-M, Zhou Q-W, Guo K, Ge F, Hou J-Y, et al. Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969. Biodegradation. 2013;24(6):855-64.

Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J Environ Sci. 2011;23(3):396-403.

Cha M, Chambliss GH. Characterization of acrylamidase isolated from a newly isolated acrylamide-utilizing bacterium, Ralstonia eutropha AUM-01. Curr Microbiol. 2011;62(2):671-8.

Chandrashekar V, Chandrashekar C, Shivakumar R, Bhattacharya S, Das A, Gouda B, et al. Assessment of acrylamide degradation potential of Pseudomonas aeruginosa BAC-6 isolated from industrial effluent. Appl Biochem Biotechnol. 2014;173(5):1135-44.

Emmanuel Joshua Jebasingh S a, Lakshmikandan M a, Rajesh RP b, Raja P c. Biodegradation of acrylamide and purification of acrylamidase from newly isolated bacterium Moraxella osloensis MSU11. Int Biodeterior Biodegrad. 2013;85: 120-5.

Lakshmikandan M, Sivaraman K, Raja SE, Vasanthakumar P, Rajesh RP, Sowparthani K, et al. Biodegradation of acrylamide by acrylamidase from Stenotrophomonas acidaminiphila MSU12 and analysis of degradation products by MALDI-TOF and HPLC. Int Biodeterior Biodegrad. 2014;94: 214-21.

Nawaz MS, Billedeau SM, Cerniglia CE. Influence of selected physical parameters on the biodegradation of acrylamide by immobilized cells of Rhodococcus sp. Biodegradation. 1998;9(5):381-7.

Thanyacharoen U, Tani A, Charoenpanich J. Isolation and characterization of Kluyvera georgiana strain with the potential for acrylamide biodegradation. J Environ Sci Health - Part Toxic Hazardous Subst Environ Eng. 2012;47(11):1491-9.

Downloads

Published

2022-12-31

How to Cite

Yakasai, H. M., Rahman, M. F. A., Rahman, M. F. A., EL-Mongy, M. A., EL-Mongy, M. A., Shamaan, N. A., Lee, C. H., Syed, M. A., & Shukor, M. Y. (2022). Isolation and Characterization of a Molybdenum-reducing Enterobacter aerogenes strain Amr-18 in Soils from Egypt that Could Grow on Amides. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 6(2), 40–47. https://doi.org/10.54987/bessm.v6i2.747

Issue

Section

Articles