Mathematical Modeling of Molybdenum Blue Production from Bacillus sp. Strain Khayat

Authors

  • Garba Uba Department of Science Laboratory Technology, College of Science and Technology, Jigawa State Polytechnic, Dutse, PMB 7040, Nigeria.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Nigeria.
  • Mohd Ezuan Khayat Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v6i2.743

Keywords:

Mathematical modelling, Bacillus sp., Molybdenum-reducing bacterium, Molybdenum blue, Logistic model

Abstract

In the long run, bioremediation is the utmost cost-effective way, particularly at low concentrations while other methods like physical or chemical procedures would be ineffective, for the elimination of heavy metals and organic pollutants. The process of reducing molybdenum (sodium molybdate) with an oxidation state of (VI) to molybdenum blue (oxidation state from V to VI) serves as a form of detoxification. Important characteristics, such as specific reduction rate, theoretical reduction maximum, and the lag duration of reduction, can be shown by mathematical modeling of the reduction process. While natural logarithm transformation is a common linearization approach, it is not precise and can only provide a rough estimate of the most important single measurable parameter; the specific growth rate. In this study, for the first time, values for the aforementioned parameters or constants were calculated using a wide range of models, including the logistic, Gompertz, Richards, Schnute, Baranyi-Roberts,  Buchanan three-phase, von Bertalanffy and most recently, the Huang model. Based on statistical tests including root-mean-square error (RMSE), bias factor (BF), adjusted coefficient of determination (adjR2), accuracy factor (AF), and corrected Akaike information criterion (AICc), the logistics model was found to be the best model for representing the Mo-blue production curve of Bacillus sp. strain khayat. The fitting technique resulted in the calculation of three parameters: specific reduction rate (h-1),  Lag period (h), and maximum Mo-blue production (nmole Mo-blue). In this study, we utilize a mathematical technique to determine the reduction parameters for Mo-blue production from sodium molybdate. The calculated parameter constants will be used to create secondary models, such as the influence of substrate and environment on Mo-blue synthesis.

References

Buchanan RL. Predictive food microbiology. Trends Food Sci Technol. 1993;4(1):6-11.

Whiting RC. Modeling bacterial survival in unfavorable environments. J Ind Microbiol. 1993;12(3-5):240-6.

Huang L. Optimization of a new mathematical model for bacterial growth. Food Control. 2013;32(1):283-8.

LeGendre GR, Runnells DD. Removal of dissolved molybdenum from wastewaters by precipitates of ferric iron. Environ Sci Technol. 1975;9(8):744-9.

Runnells DD, Kaback DS, Thurman EM. Geochemistry and sampling of molybdenum in sediments, soils, and plants in Colorado. In: Chappel WR, Peterson KK, editors. Molybdenum in the environment. New York: Marcel and Dekker, Inc.; 1976.

Simeonov LI, Kochubovski MV, Simeonova BG, editors. Environmental Heavy Metal Pollution and Effects on Child Mental Development [Internet]. Dordrecht: Springer Netherlands; 2011 [cited 2015 Jul 7]. (NATO Science for Peace and Security Series C: Environmental Security; vol. 1). Available from: http://link.springer.com/10.1007/978-94-007-0253-0

Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut. 2001;128(1-2):85-96.

Underwood EJ. Environmental sources of heavy metals and their toxicity to man and animals. 1979;11(4-5):33-45.

Kincaid RL. Toxicity of ammonium molybdate added to drinking water of calves. J Dairy Sci. 1980;63(4):608-10.

Abo-Shakeer LKA, Ahmad SA, Shukor MY, Shamaan NA, Syed MA. Isolation and characterization of a molybdenum-reducing Bacillus pumilus strain lbna. J Environ Microbiol Toxicol. 2013;1(1):9-14.

Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol. 2012;52(3):296-305.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013.

Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp. strain DRY2. J Appl Microbiol. 2010;108(6):2050-8.

Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, et al. Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr. Y6. Appl Biochem Biotechnol. 2008;149(1):33-43.

Shukor MY, Rahman MF, Shamaan NA, Syed MS. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J Basic Microbiol. 2009;49(SUPPL. 1):S43-54.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol (Praha). 2010;55(2):137-43.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Bacterial reduction of hexavalent molybdenum to molybdenum blue. World J Microbiol Biotechnol. 2009;25(7):1225-34.

Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr. Y9. Pol J Microbiol. 2009;58(2):141-7.

Campbell AM, Del Campillo-Campbell A, Villaret DB. Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc Natl Acad Sci U S A. 1985;82(1):227-31.

Capaldi A, Proskauer B. Beiträge zur Kenntniss der Säurebildung bei Typhus-bacillen und Bacterium coli - Eine differential-diagnostische Studie. Z Für Hyg Infect. 1896;23(3):452-74.

Khan A, Halmi MIE, Shukor MY. Isolation of Mo-reducing bacterium in soils from Pakistan. J Environ Microbiol Toxicol. 2014;2(1):38-41.

Levine VE. The reducing properties of microorganisms with special reference to selenium compounds. J Bacteriol. 1925;10(3):217-63.

Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, et al. Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquat Toxicol. 2007;83(1):43-51.

Zhang YL, Liu FJ, Chen XL, Zhang ZQ, Shu RZ, Yu XL, et al. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med. 2013;59(6):312-8.

Halmi MIE, Ahmad SA, Syed MA, Shamaan NA, Shukor MY. Mathematical modelling of the molybdenum reduction kinetics in Bacillus pumilus strain Lbna. Bull Environ Sci Manag. 2014;2(1):24-9.

Ricker, F.J. 11 Growth Rates and Models. In: W.S. Hoar DJR and JRB, editor. Fish Physiology. Academic Press; 1979. p. 677-743. (Bioenergetics and Growth; vol. Volume 8).

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc London. 1825;115:513-85.

Richards, F.J. A flexible growth function for empirical use. J Exp Bot. 1959;10:290-300.

Baranyi J. Mathematics of predictive food microbiology. Int J Food Microbiol. 1995;26(2):199-218.

Babák L, Šupinová P, Burdychová R. Growth models of Thermus aquaticus and Thermus scotoductus. Acta Univ Agric Silvic Mendel Brun. 2012;60(5):19-26.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

Khayat ME, Rahman MFA, Shukor MS, Ahmad SA, Shamaan NA, Shukor MY. Characterization of a molybdenum-reducing Bacillus sp. strain khayat with the ability to grow on SDS and diesel. Rendiconti Lincei. 2016;Article in Press.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):42-4.

Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AKM, Tano T, et al. Isolation and characterization of a Mo6+-reducing bacterium. 1993;59(4):1176-80.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. J Biol Sci. 2007;7(8):1448-52.

Rahman MFA, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol. 2009;30(1):65-72.

Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA. Molybdate reduction to molybdenum blue by an antarctic bacterium. BioMed Res Int. 2013;2013.

Halmi MIE, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al. Hexavalent molybdenum reduction to Mo-blue by a Sodium-Dodecyl-Sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Res Int. 2013;2013:e384541.

Shukor MY, Lee CH, Omar I, Karim MIA, Syed MA, Shamaan NA. Isolation and characterization of a molybdenum-reducing enzyme in Enterobacter cloacae strain 48. Pertanika J Sci Technol. 2003;11(2):261-72.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1(5):365-74.

Akaike H. New look at the statistical model identification. IEEE Trans Autom Control. 1974;AC-19(6):716-23.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol. 1987;62(6):479-90.

Lu X, Withers MR, Seifkar N, Field RP, Barrett SRH, Herzog HJ. Biomass logistics analysis for large scale biofuel production: Case study of loblolly pine and switchgrass. Bioresour Technol. 2015;183:1-9.

Mondala A, Hernandez R, French T, Green M, McFarland L, Ingram L. Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate. Renew Energy. 2015;78:114-8.

Muralidharan R, Radha KV. A kinetic study of polyhydroxybutyrate production on nitrogen limited medium using Bacillus subtilis MTCC 9763 through a two stage cultivation strategy. J Environ Biol. 2015;36(3):537-42.

Musavi SF, Dhavale A, Balakrishnan RM. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic fusarium oxysporum NFX06. Prep Biochem Biotechnol. 2015;45(2):158-72.

Zerbini PE, Vanoli M, Rizzolo A, Grassi M, Pimentel RMDA, Spinelli L, et al. Optical properties, ethylene production and softening in mango fruit. Postharvest Biol Technol. 2015;101:58-65.

Bolker BM. Ecological Models and Data in R. Princeton, N.J: Princeton University Press; 2008. 408 p.

Downloads

Published

2022-12-31

How to Cite

Uba, G., Abubakar, A., Yakasai, H. M., & Khayat, M. E. (2022). Mathematical Modeling of Molybdenum Blue Production from Bacillus sp. Strain Khayat . Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 6(2), 8–13. https://doi.org/10.54987/bessm.v6i2.743

Issue

Section

Articles