Isolation and Growth Characterization of an Acrylamide-degrading Bacillus sp. strain UPM2021n Isolated from the Juru River

Authors

  • Ubana Muhammed Abdullahi Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Faggo Abdullahi Adamu Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Motharasan Manogaran Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v6i2.738

Keywords:

Acrylamide, Bacillus sp., Bioremediation, Biodegradation, Characterization

Abstract

Polyacrylamide, in which acrylamide is the primary component, degrades back into acrylamide over time. Major amounts of acrylamide can be found in soil. The bioremediation strategy of using microbes to break down acrylamide is gaining popularity in many parts of the world. Several acrylamide-degrading bacteria have been isolated from sediment from the Juru River’s bank. The best isolate was a bacterium identified tentatively as Bacillus sp. strain UPM2021n based on cultural, colony morphology and biochemical tests.  According to early studies, ideal growth parameters included a pH range of 6.5 and 7.0 and a temperature range of 25 to 35 degrees Celsius. Both glucose and sucrose performed at a similar level in supporting the growth of this bacterium on acrylamide as the sole nitrogen source. The highest growth occurs in between 300 and 500 mg/L of acrylamide, resulting in a growth of nearly 7.7 log CFU/mL with a nett growth of about 4 Log CFU/mL as compared to the control. Growth was nearly tolerated at the highest concentrations tested, which was 1500 mg/L and growth completely ceased at higher concentrations  Toxic heavy metals tested such as mercury, copper, chromium, and cadmium showed that mercury strongly hampered growth on acrylamide whilst other metal ions such as copper, lead, cadmium, and chromium showed from 30 to 60%  inhibition. The relatively high tolerance of acrylamide makes this bacterium suitable for remediation of soil contaminated with acrylamide whilst its sensitivity to heavy metals chiefly mercury means metal-chelating or sequestering compounds must be added to soil contaminated with both acrylamide and heavy metals.

References

Halmi MIE, Jirangon H, Johari WLW, Abdul Rachman AR, Shukor MY, Syed MA. Comparison of Microtox and Xenoassay light as a near real time river monitoring assay for heavy metals. Sci World J. 2014;2014.

Mat I, Maah MJ, Johari A. Trace metal geochemical associations in sediments from the culture- bed of Anadara granosa. Mar Pollut Bull. 1994;28(5):319-23.

Ratnam S, Mohd Zanuri NB. Microplastic ingestion of blood cockles (Tegillarca granosa) in Kuala Juru, Pulau Pinang. Surv Fish Sci. 2022 Oct 10;9(1):97-115.

The ASEAN Post team. Southeast Asia's stream of polluted rivers. The ASEAN Post [Internet]. 2017 [cited 2022 Dec 27]; Available from: https://theaseanpost.com/article/southeast-asias-stream-polluted-rivers

Mottram, DS, Wedzicha BL, Dobson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419:448-9.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Sega GA, Valdivia Alcota RP, Tancongco CP, Brimer PA. Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat Res Mutagen Relat Subj. 1989 Aug 1;216(4):221-30.

Spencer P, Schaumburg HH. Nervous system degeneration produced by acrylamide monomer. Environ Health Perspect. 1975 Jun 1;11:129-33.

Eikmann T, Herr C. How dangerous is actually acrylamide exposure for the population. Umweltmed Forsch Prax. 2002;7(6):307-8.

Pruser KN, Flynn NE. Acrylamide in health and disease. Front Biosci - Sch. 2011;3 S(1):41-51.

Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M. Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health. 2013;10(9):3843-54.

Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001;27(4):219-26.

Igisu H, Goto I, Kawamura Y, Kato M, Izumi K. Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry. 1975;38(6):581-4.

Wampler DA, Ensign SA. Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Appl Environ Microbiol. 2005;71(10):5850-7.

Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J Environ Sci. 2011;23(3):396-403.

Charoenpanich J, Tani A. Proteome analysis of acrylamide-induced proteins in a novel acrylamide-degrader Enterobacter aerogenes by 2D electrophoresis and MALDI-TOF-MS. Chiang Mai Univ J Nat Sci. 2014;13(1):11-22.

Gusmanizar N, Shukor Y, Ramli J, Syed MA. Isolation and characterization of an acrylamide-degrading Burkholderia sp. strain DR.Y27. J Ris Kim. 2015 Feb 11;2(1):34.

Yu F, Fu R, Xie Y, Chen W. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. Int J Environ Res Public Health. 2015;12(4):4214-30.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Aisami A, Gusmanizar N. Characterization of an acrylamide-degrading bacterium isolated from hydrocarbon sludge. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):15-9.

Othman AR, Rahim MBHA. Modelling the Growth Inhibition Kinetics of Rhodotorula sp. strain MBH23 (KCTC 11960BP) on Acrylamide. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):20-5.

Rusnam, Gusmanizar N. An Acrylamide-degrading Bacterial Consortium Isolated from Volcanic Soil. J Biochem Microbiol Biotechnol. 2021 Dec 31;9(2):19-24.

Rusnam, Gusmanizar N. Characterization of An Acrylamide-degrading Bacterium Isolated from Volcanic Soil. J Environ Bioremediation Toxicol. 2022 Aug 5;5(1):32-7.

Manogaran M, Manogaran B, Othman AR, Gunasekaran B, Shukor MYA. Decolourisation of Reactive Red 120 by a Heavy Metal-tolerant Bacterium Isolated from Juru River, Malaysia. Bioremediation Sci Technol Res. 2020 Jul 31;8(1):23-6.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology. 9th ed. Lippincott Williams & Wilkins; 1994.

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Zeid IMA, Rahman MF, Shukor MY. Isolation of A Molybdenum-reducing Bacillus sp. strain Zeid 15 and Modeling of its Growth on Amides. Bull Environ Sci Sustain Manag. 2021 Dec 31;5(2):19-27.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Environ Biol. 2009;30(1):57-64.

Bao M, Chen Q, Li Y, Jiang G. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. J Hazard Mater. 2010 Dec 15;184(1):105-10.

Li W, Liu R, Liang F, Yang Z, Shi M. Study on the characteristics of a strain of polyacrylamide-degrading bacteria. Acta Sci Circumstantiae. 2004 Jan 1;24(6):1116-21.

Nakamiya K, Kinoshita S. Isolation of polyacrylamide-degrading bacteria. J Ferment Bioeng. 1995 Jan 1;80(4):418-20.

Jonston JJ, Borden RC, Barlaz MA. Anaerobic biodegradation of alkylbenzenes and trichloroethylene in aquifer sediment down gradient of a sanitary landfill. J Contam Hydrol. 1996;23(4):263-83.

Shah M. Microbial Degradation of Acrylamide by Enterobacter spp. Am J Water Resour. 2014 Nov 2;2:134-40.

Shimamura Y, Yui T, Horiike H, Masuda S. Toxicity of combined exposure to acrylamide and Staphylococcus aureus. Toxicol Rep. 2022 Jan 1;9:876-82.

Kulkarni NH, Muley AB, Bedade DK, Singhal RS. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng [Internet]. 2019; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075085765&doi=10.1007%2fs00449-019-02240-4&partnerID=40&md5=12e064000a11176469878181f8642894

Lakshmikandan M, Sivaraman K, Elaiya Raja S, Vasanthakumar P, Rajesh RP, Sowparthani K, et al. Biodegradation of acrylamide by acrylamidase from Stenotrophomonas acidaminiphila MSU12 and analysis of degradation products by MALDI-TOF and HPLC. Int Biodeterior Biodegrad. 2014;94:214-21.

Chandrashekar V, Chandrashekar C, Shivakumar R, Bhattacharya S, Das A, Gouda B, et al. Assessment of acrylamide degradation potential of Pseudomonas aeruginosa BAC-6 isolated from industrial effluent. Appl Biochem Biotechnol. 2014;173(5):1135-44.

Emmanuel Joshua Jebasingh S, Lakshmikandan M, Rajesh RP, Raja P. Biodegradation of acrylamide and purification of acrylamidase from newly isolated bacterium Moraxella osloensis MSU11. Int Biodeterior Biodegrad. 2013;85:120-5.

Ansede JH, Pellechia PJ, Yoch DC. Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl Environ Microbiol. 1999 Nov;65(11):5075-81.

Baek SH, Kim KH, Yin CR, Jeon CO, Im WT, Kim KK, et al. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr Microbiol. 2003;47(6):462-6.

Egorova K, Trauthwein H, Verseck S. Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl Microbiol Biotechnol. 2004;38-45.

Rahim MBH, Syed MA, Shukor MY. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp . strain MBH23 KCTC 11960BP. J Basic Microbiol. 2012;52(5):573-81.

Rogacheva SM, Ignatov OV. The Respiratory Activity of Rhodococcus rhodochrous M8 Cells Producing Nitrile-Hydrolyzing Enzymes. Appl Biochem Microbiol. 2001;37(3):282-6.

Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp . strain DRY2. J Appl Microbiol. 2010;108:2050-8.

Wampler DA, Ensign SA. Photoheterotrophic Metabolism of Acrylamide by a Newly Isolated Strain of Rhodopseudomonas palustris. Appl Environ Microbiol. 2005 Oct;71(10):5850-7.

Shen S min, Wan T jou, Hwang H yuan. Biocatalysis and Agricultural Biotechnology Enhancement of degradation of acrylamide coupled with salad oil by Pseudomonas aeruginosa DS-4 using incubation periods. Biocatal Agric Biotechnol. 2012;1(2):110-4.

Wakaizumi M, Yamamoto H, Fujimoto N, Ozeki K. Acrylamide degradation by filamentous fungi used in food and beverage industries. J Biosci Bioeng. 2009;108(5):391-3.

Cha M, Chambliss GH. Characterization of Acrylamidase Isolated from a Newly Isolated Acrylamide-Utilizing Bacterium , Ralstonia eutropha AUM-01. Curr Microbiol. 2011;671-8.

Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, Maccormack WP, Syed MA. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J Enviromental Biol. 2009;30(1):107-12.

Bedade DK, Muley AB, Singhal RS. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour Technol. 2019;272:137-45.

Bedade DK, Singhal RS. Isolation and Characterization of Acrylamidase from Arthrobacter sp. DBV1 and Its Ability to Biodegrade Acrylamide. Appl Biochem Biotechnol. 2017;182(2):570-85.

Syed MA, Ahmad SA, Kusnin N, Shukor MYA. Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27. Afr J Biotechnol. 2012;11(2):329-36.

Cha M, Chambliss GH. Characterization of acrylamidase isolated from a newly isolated acrylamide-utilizing bacterium, Ralstonia eutropha AUM-01. Curr Microbiol. 2011;62(2):671-8.

Rahman MFA, Yasid NA, Ahmad SA, Shamaan NA, Shukor MY. Characterization of molybdenum-reduction by an acrylamide-degrading Antarctic bacterium. In 10-3 Midori-cho, Tachikawa, Tokyo, Japan: National Institute of Polar Research (NIPR); 2018. Available from: http://id.nii.ac.jp/1291/00015258/

Amor L, Kennes C, Veiga MC. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol. 2001 Jun 1;78(2):181-5.

Gopinath KP, Kathiravan MN, Srinivasan R, Sankaranarayanan S. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol. 2011;102(4):3687-93.

Roane TM, Josephson KL, Pepper IL. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil. Appl Environ Microbiol. 2001 Jul;67(7):3208-15.

Hettiarachchi GM, Pierzynski GM, Ransom MD. In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol. 2000;34(21):4614-9.

Babich H, Stotzky G. Effect of Cadmium on Fungi and on Interactions Between Fungi and Bacteria in Soil: Influence of Clay Minerals and pH. Appl Environ Microbiol. 1977 May;33(5):1059-66.

Kamel Z. Toxicity of cadmium to twoStreptomyces species as affected by clay minerals. Plant Soil. 1986 Jun 1;93(2):195-203.

Downloads

Published

2022-12-31

How to Cite

Abdullahi, U. M. ., Adamu, F. A., Manogaran, M., Yasid, N. A., & Shukor, M. Y. (2022). Isolation and Growth Characterization of an Acrylamide-degrading Bacillus sp. strain UPM2021n Isolated from the Juru River. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 6(2), 1–7. https://doi.org/10.54987/bessm.v6i2.738

Issue

Section

Articles