Activation energy, Temperature Coefficient and Q10 Value Estimations of the Growth of Alcaligenes sp. YLA11 on Diesel

Authors

  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Abubakar Aisami Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.

DOI:

https://doi.org/10.54987/bessm.v6i1.707

Keywords:

diesel-degrading, Alcaligenes sp. YLA11, Temperature, Arrhenius plot, breakpoint

Abstract

Several models can be used to mimic the temperature-dependent growth rate of microorganisms on different media. Arrhenius is a popular model because of its small number of parameters. Microbial growth and metabolic activity on their substrates are generally affected by temperature. Microbes are vulnerable to temperature changes because of their small size. With a chevron-like discontinuous graph of apparent activation energy and a breakpoint, growth on diesel by Alcaligenes sp. YLA11 is described showing a breakpoint at 28.05 °C. Regression analysis resulted in two activation energies: 20–27 °C and 30–42 °C with the activation energies of 41.72 kJ/mol and 84.72 kJ/mol, respectively. For the examined temperature range (30-42 °C), a Q10 value of 2.905 and a theta value of 1.11 was calculated. Predicting the breakdown of diesel and its movement during bioremediation is an output that can be predicted by parts of this study.

References

Yan F, Wei R, Cui Q, Bornscheuer UT, Liu YJ. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb Biotechnol. 2021;14(2):374-85.

Yakasai HM, Safiyanu AJ, Ibrahim S, Babandi A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on Molybdenum Reduction Rate by Pantoea sp. strain HMY-P4. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):16-20.

Wu SC, Gao JK, Chang BS. Isolation of lindane- and endosulfan-degrading bacteria and dominance analysis in the microbial communities by culture-dependent and independent methods. Microbiol Res. 2021 Oct 1;251:126817.

Sufyan AJ, Ibrahim S, Babandi A, Yakasai HM. Characterization of Butachlor Degradation by A Molybdenum-Reducing and Aniline-degrading Pseudomonas sp. J Environ Microbiol Toxicol. 2021 Dec 31;9(2):8-12.

Shuhaimi N, AbdEl-Mongy MA, Shamaan NA, Lee CH, Syed MA, Shukor MY. Isolation and Characterization of a PEG-degrading and Mo-reducing Escherichia coli strain Amr-13 in soils from Egypt. J Environ Microbiol Toxicol. 2021 Dec 31;9(2):23-9.

Allamin IA, Shukor MY. Phytoremediation of PAHs in Contaminated Soils: A Review. Bioremediation Sci Technol Res. 2021 Dec 31;9(2):1-6.

Abubakar A, Ibrahim S. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Acinetobacter calcoaceticus strain Dr.Y12. Bioremediation Sci Technol Res. 2021 Jul 31;9(1):32-8.

Kaida N, Habib S, Yasid NA, Shukor MY. Biodegradation of Petroleum Hydrocarbons by Bacillus spp.: A Review. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):14-21.

Muñiz S, Gonzalvo P, Valdehita A, Molina-Molina JM, Navas JM, Olea N, et al. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools. Ecotoxicol Environ Saf. 2017;145:539-48.

Saidu K, Baba A, Atta H. Diesel-Degrading Potential of Pseudomonas putida Isolated from Effluent of a Petroleum Refinery in Nigeria. UMYU J Microbiol Res UJMR. 2019 Dec 1;4:105-12.

Pranowo PP, Titah HS. Isolation and screening of diesel-degrading bacteria from the diesel contaminated seawater at Kenjeran Beach, Surabaya. EnvironmentAsia. 2016;9(2):165-9.

Dahalan FA, Yunus I, Johari WLW, Shukor MY, Halmi MIE, Shamaan NA, et al. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil. J Environ Biol. 2014;35(2):399-406.

Shukor MY, Dahalan FA, Jusoh AZ, Shamaan NA, Syed MA. Characterization of diesel-degrading enzymes from Acinetobacter sp. strain DRY12. Bioremediation Sci Technol Res. 2013;1(1):15-8.

Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012;28(5):2057-67.

Hong JH, Kim J a, Choi OK, Cho KS a, Ryu HW. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol. 2005;21(3):381-4.

Singh RK, Kumar S, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40(2):293-303.

Reardon KF, Mosteller DC, Bull Rogers JD. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F 1. Biotechnol Bioeng. 2000;69(4):385-400.

Onysko KA, Budman HM, Robinson CW. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol Bioeng. 2000 Nov 5;70(3):291-9.

Angelova B, Avramova T, Stefanova L, Mutafov S. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation. 2008;19(3):387-93.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van't Riet K. Modeling of bacterial growth as a function of temperature. Appl Environ Microbiol. 1991 Apr;57(4):1094-101.

Gafar AA, Manogaran M, Yasid NA, Halmi MIE, Shukor MY, Othman AR. Arrhenius plot analysis, temperature coefficient and Q10 value estimation for the effect of temperature on the growth rate on acrylamide by the Antarctic bacterium Pseudomonas sp. strain DRYJ7. J Environ Microbiol Toxicol. 2019 Jul 31;7(1):27-31.

Arabo AA, Bamanga RA, Fadilu M, Abubakar M, Shehu FA, Yakasai HM, et al. Isolation and Characterization of Biosurfactant-producing Alcaligenes sp. YLA11 and its Diesel Degradation Potentials. Bioremediation Sci Technol Res. 2021 Dec 31;9(2):7-12.

Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Für Phys Chem. 1889 Jan 1;

Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology. 2005;151(12):4139-51.

Aisami A, Yasid NA, Johari WLW, Shukor MY. Estimation of the Q10 value; the temperature coefficient for the growth of Pseudomonas sp. aq5-04 on phenol. Bioremediation Sci Technol Res. 2017 Jul 31;5(1):24-6.

Benedek P, Farkas P. Influence of temperature on the reactions of the activated sludge process. In: Murphy RS, Nyquist D, Neff PW, editors. Proceedings of the international symposium on water pollution control in cold climates. University of Alaska, Washington, DC: Environmental Protection Agency; 1970.

Reynolds JH, Middlebrooks EJ, Procella DB. Temperature-toxicity model for oil refinery waste. J Environ Eng Div. 1974;100(3):557-76.

Melin ES, Jarvinen KT, Puhakka JA. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res. 1998 Jan 1;32(1):81-90.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. Modeling biodegradation of nonylphenol. Water Air Soil Pollut Focus. 2008 Aug 1;8(3-4):395-404.

Bandyopadhyay SK, Chatterjee K, Tiwari RK, Mitra A, Banerjee A, Ghosh KK, et al. Biochemical studies on molybdenum toxicity in rats: effects of high protein feeding. Int J Vitam Nutr Res. 1981;51(4):401-9.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Guo J, Lian J, Xu Z, Xi Z, Yang J, Jefferson W, et al. Reduction of Cr(VI) by Escherichia coli BL21 in the presence of redox mediators. Bioresour Technol. 2012 Nov 1;123:713-6.

Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech. 2012 Mar;2(1):79-87.

Zhao R, Guo J, Song Y, Chen Z, Lu C, Han Y, et al. Mediated electron transfer efficiencies of Se(IV) bioreduction facilitated by meso-tetrakis (4-sulfonatophenyl) porphyrin. Int Biodeterior Biodegrad. 2020 Feb 1;147:104838.

dos Santos AB, Cervantes FJ, van Lier JB. Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Appl Microbiol Biotechnol. 2004 Mar;64(1):62-9.

Dafale N, Wate S, Meshram S, Nandy T. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. J Hazard Mater. 2008 Nov 30;159(2):319-28.

Chen G, Huang M hong, Chen L, Chen D hui. A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. Int Biodeterior Biodegrad. 2011 Sep 1;65(6):790-6.

Chang JS, Kuo TS. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol. 2000 Nov 1;75(2):107-11.

Behzat B. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa. Water Sci Technol. 2015 Jul 6;72(8):1266-73.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006;22(11):1205-13.

Tchobanoglous G, Schoeder ED. Water quality: Characteristics, modeling and modification. 1 edition. Reading, Mass: Pearson; 1985. 780 p.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Melin ES, Ferguson JF, Puhakka JA. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Appl Microbiol Biotechnol. 1997 Jun 1;47(6):675-82.

Kuhn HJ, Cometta S, Fiechter A. Effects of growth temperature on maximal specific growth rate, yield, maintenance, and death rate in glucose-limited continuous culture of the thermophilic Bacillus caldotenax. Eur J Appl Microbiol Biotechnol. 1980;10(4):303-15.

Ceuterick F, Peeters J, Heremans K, De Smedt H, Olbrechts H. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. Eur J Biochem. 1978;87(2):401-7.

Mutafov SB, Minkevich IG. Temperarture effect on the growth of Candida utilis VLM-Y-2332 on ethanol. Comptes Rendus Acad Bulg Sci. 1986;39:71-4.

Funamizu N, Takakuwa T. Simulation analysis of operating conditions for a municipal wastewater treatment plant at low temperatures. In: Margesin R, Schinner F, editors. Biotechnological Applications of Cold-Adapted Organisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 203-20.

Yakasai HM, Yasid NA, Shukor MY. Temperature Coefficient and Q10 Value Estimation for the Growth of Molybdenum-reducing Serratia sp. strain HMY1. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):22-4.

Gibbs CF, Davis SJ. The rate of microbial degradation of oil in a beach gravel column. Microb Ecol. 1976 Mar 1;3(1):55-64.

Malina G, Grotenhuis JTC, Rulkens WH. The effect of temperature on the bioventing of soil contaminated with toluene and decane. J Soil Contam. 1999 Jul 1;8(4):455-80.

Oh YS, Kim SJ. Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon. Korean J Microbiol Korea R. 1989;26(4):339-47.

Kim BY, Hyun HH. Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng. 2002 Aug 1;7(4):194.

Atlas RM, Bartha R. Fate and effects of polluting petroleum in the marine environment. In: Gunther FA, editor. Residue Reviews. Springer New York; 1973. p. 49-85. (Residue Reviews).

Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extrem Life Extreme Cond. 2005 Dec;9(6):461-70.

Bagi A, Pampanin DM, Brakstad OG, Kommedal R. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q10 approach. Mar Environ Res. 2013 Aug;89:83-90.

Downloads

Published

2022-07-31

How to Cite

Yakasai, H. M. ., & Aisami, A. . (2022). Activation energy, Temperature Coefficient and Q10 Value Estimations of the Growth of Alcaligenes sp. YLA11 on Diesel. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 6(1), 28–32. https://doi.org/10.54987/bessm.v6i1.707

Issue

Section

Articles