Characterization of a Molybdenum-reducing and Phenol-degrading Pseudomonas sp. strain Neni-4 from soils in West Sumatera, Indonesia

Authors

  • . Rusnam Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang 25163, Indonesia.
  • Neni Gusmanizar Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Padang, 25163, Indonesia.
  • Mohd Fadhil Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bessm.v6i1.670

Keywords:

Mo-reducing bacterium, Pseudomonas aeruginosa, Molybdenum blue, Phenol-degrading, Biodegradation

Abstract

Millions of tonnes of these chemicals are manufactured each year and a large quantity is determined to be contaminating the environment, making them important worldwide pollutants. The fact that they pollute the environment is a major problem on a worldwide scale. There is a continuing search for bioremediation of these contaminants employing bacteria capable of numerous detoxifications. Analysis of the bacterium yielded a preliminary identification of the organism as Pseudomonas aeruginosa Neni-4. Screening for the capacity of molybdenum-reducing bacteria to decolorize different polyphenols was conducted in this study. Reduction was optimum at pH 6.3 and between 25 and 40 oC. The bacterium used glucose as the best carbon source or molybdenum reduction followed by galactose, 2-ketogluconate, and citrate in decreasing order. Phosphate between 5.0 and 7.5 mM and sodium molybdate between 15 and 20 mM maximally supported reduction. Like earlier Mo-reducing bacteria, a reduction of phosphomolybdate is seen in the absorption spectra of the Mo-blue generated. Heavy metals prevented molybdenum reduction. None of the phenolic compounds can reduce molybdenum when provided as sole carbon sources. In contrast, the bacterium was able to grow on phenol, benzoate, salicylic acid, and catechol, all of which are substances that include phenolic components. A significant bioremediation technology is this bacterium's capacity to metabolise molybdenum and thrive on poisonous phenolics.

References

Frascoli F, Hudson-Edwards KA. Geochemistry, mineralogy and microbiology of molybdenum in mining-affected environments. Minerals [Internet]. 2018;8(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041097988&doi=10.3390%2fmin8020042&partnerID=40&md5=5056477adb552fde71a98b5ac81f555f

Smedley PL, Kinniburgh DG. Molybdenum in natural waters: A review of occurrence, distributions and controls. Appl Geochem. 2017 Sep 1;84:387-432.

Rezaie-Boroon MH, Gnandi K, Folly KTM. Presence and distribution of toxic trace elements in water and sediments of the southern Togo Rivers watershed, West Africa. Fresenius Environ Bull. 2011;20(7 A):1853-65.

Davis GK. Molybdenum. In: Merian E, editor. Metals and their Compounds in the Environment, Occurrence, Analysis and Biological Relevance. VCH Weinheim, New York; 1991. p. 1089-100.

Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. 2001;128(1-2):85-96.

Bi CM, Zhang YL, Liu FJ, Zhou TZ, Yang ZJ, Gao SY, et al. The effect of molybdenum on the in vitro development of mouse preimplantation embryos. Syst Biol Reprod Med. 2013;59(2):69-73.

Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, et al. Cadmium, lead, and other metals in relation to semen quality: Human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect. 2008;116(11):1473-9.

Zhai XW, Zhang YL, Qi Q, Bai Y, Chen XL, Jin LJ, et al. Effects of molybdenum on sperm quality and testis oxidative stress. Syst Biol Reprod Med. 2013;59(5):251-5.

Zhang YL, Liu FJ, Chen XL, Zhang ZQ, Shu RZ, Yu XL, et al. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med. 2013;59(6):312-8.

Underwood EJ. Environmental sources of heavy metals and their toxicity to man and animals. 1979;11(4-5):33-45.

Kincaid RL. Toxicity of ammonium molybdate added to drinking water of calves. J Dairy Sci. 1980;63(4):608-10.

Achmadi UF. Public health implications of environmental pollution in urban Indonesia. Asia Pac J Clin Nutr. 1996;5(3):141-4.

Dahalan FA, Yunus I, Johari WLW, Shukor MY, Halmi MIE, Shamaan NA, et al. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil. J Environ Biol. 2014;35(2):399-406.

Gami AA, Shukor MY, Khalil KA, Dahalan FA, Khalid A, Ahmad SA. Phenol and its toxicity. J Environ Microbiol Toxicol. 2014;2(1):11-23.

Hansch C, McKarns SC, Smith CJ, Doolittle DJ. Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact. 2000;127(1):61-72.

Aditiawati P, Akhmaloka, Astuti DI, Sugilubin, Pikoli MR. Biodesulfurization of subbituminous coal by mixed culture bacteria isolated from coal mine soil of South Sumatera. Biotechnology. 2013;12(1):46-53.

Bhattacharya A, Gupta A, Kaur A, Malik D. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol. 2014;98(23):9829-41.

Sun JQ, Xu L, Tang YQ, Chen FM, Liu WQ, Wu XL. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol. J Hazard Mater. 2011;191(1-3):62-8.

Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr. Y9. Pol J Microbiol. 2009;58(2):141-7.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergeys Man Determinative Bacteriol. 1994;

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Abd Shukor MS, Aftab K, Norazlina M, Effendi Halmi M, Sheikh A, Shukor M. Isolation of a Novel Molybdenum-reducing and Azo Dye Decolorizing Enterobacter sp. Strain Aft-3 from Pakistan. Chiang Mai Univ J Nat Sci. 2016 Jan 1;15:95-114.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):1-3.

Campbell AM, Campillo-Campbell AD, Villaret DB. Molybdate reduction by Escherichia coli K-12 and its chl mutants. 1985;82(1):227-31.

Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AKM, Tano T, et al. Isolation and characterization of a Mo6+-reducing bacterium. 1993;59(4):1176-80.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. J Biol Sci. 2007;7(8):1448-52.

Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, et al. Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr. Y6. Appl Biochem Biotechnol. 2008;149(1):33-43.

Rahman MFA, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol. 2009;30(1):65-72.

Shukor MY, Rahman MF, Shamaan NA, Syed MS. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J Basic Microbiol. 2009;49(SUPPL. 1):S43-54.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Bacterial reduction of hexavalent molybdenum to molybdenum blue. World J Microbiol Biotechnol. 2009;25(7):1225-34.

Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp. strain DRY2. J Appl Microbiol. 2010;108(6):2050-8.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol (Praha). 2010;55(2):137-43.

Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol. 2012;52(3):296-305.

Abo-Shakeer LKA, Ahmad SA, Shukor MY, Shamaan NA, Syed MA. Isolation and characterization of a molybdenum-reducing Bacillus pumilus strain lbna. J Environ Microbiol Toxicol. 2013;1(1):9-14.

Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA. Molybdate reduction to molybdenum blue by an antarctic bacterium. BioMed Res Int. 2013;2013.

Halmi MIE, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al. Hexavalent molybdenum reduction to Mo-blue by a Sodium-Dodecyl-Sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Res Int. 2013;2013:e384541.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013.

Khan A, Halmi MIE, Shukor MY. Isolation of Mo-reducing bacterium in soils from Pakistan. J Environ Microbiol Toxicol. 2014;2(1):38-41.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Iyamu EW, Asakura T, Woods GM. A colorimetric microplate assay method for high-throughput analysis of arginase activity in vitro. Anal Biochem. 2008;383(2):332-4.

Hori T a, Sugiyama M a, Himeno S b. Direct spectrophotometric determination of sulphate ion based on the formation of a blue molybdosulphate complex. The Analyst. 1988;113(11):1639-42.

Chae HK, Klemperer WG, Marquart TA. High-nuclearity oxomolybdenum(V) complexes. Coord Chem Rev. 1993;128(1-2):209-24.

Glenn JL, Crane FL. Studies on metalloflavoproteins. V. The action of silicomolybdate in the reduction of cytochrome c by aldehyde oxidase. Biochim Biophys Acta. 1956;22(1):111-5.

Sims RPA. Formation of heteropoly blue by some reduction procedures used in the micro-determination of phosphorus. 1961;86(1026):584-90.

Kazansky LP a, Fedotov MA b. Phosphorus-31 and oxygen-17 N.M.R. evidence of trapped electrons in reduced 18-molybdodiphosphate(V), P2Mo18O62 8-. J Chem Soc Chem Commun. 1980;(14):644-6.

Yoshimura K, Ishii M, Tarutani T. Microdetermination of phosphate in water by gel-phase colorimetry with molybdenum blue. Anal Chem. 1986;58(3):591-4.

Sharpe PJH, DeMichele DW. Reaction kinetics of poikilotherm development. J Theor Biol. 1977;64(4):649-70.

Wang X, Chang L, Zhao T, Liu L, Zhang M, Li C, et al. Metabolic switch in energy metabolism mediates the sublethal effects induced by glyphosate-based herbicide on tadpoles of a farmland frog Microhyla fissipes. Ecotoxicol Environ Saf. 2019;186.

Shukor MY, Halmi MIE, Rahman MFA, Shamaan NA, Syed MA. Molybdenum reduction to molybdenum blue in Serratia sp. strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme. BioMed Res Int. 2014;2014.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. 2007;7(8):1448-52.

Shukor MY, Rahman MFA, Shamaan NA, Lee CH, Karim MIA, Syed MA. An improved enzyme assay for molybdenum-reducing activity in bacteria. Appl Biochem Biotechnol. 2008;144(3):293-300.

Karamba IK, Yakasai H. Isolation and Characterization of a Molybdenum-reducing and Methylene Blue-decolorizing Serratia marcescens strain KIK-1 in Soils from Nigeria. Bioremediation Sci Technol Res. 2018 Jul 31;6(1):1-8.

Maarof MZ, Shukor MY, Mohamad O, Karamba KI, Halmi MIE, Rahman MFA, et al. Isolation and Characterization of a Molybdenum-reducing Bacillus amyloliquefaciens strain KIK-12 in Soils from Nigeria with the Ability to grow on SDS. J Environ Microbiol Toxicol. 2018 Jul 31;6(1):13-20.

Gafasa MA, Ibrahim SS, Babandi A, Abdullahi N, Shehu D, Ya'u M, et al. Characterizing the Molybdenum-reducing Properties of Pseudomonas sp. locally isolated from Agricultural soil in Kano Metropolis Nigeria. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):34-40.

Idris D, Gafasa MA, Ibrahim SS, Babandi A, Shehu D, Ya'u M, et al. Pantoea sp. strain HMY-P4 Reduced Toxic Hexavalent Molybdenum to Insoluble Molybdenum Blue. J Biochem Microbiol Biotechnol. 2019 Jul 31;7(1):31-7.

Kabir ZM, Gafasa MA, Kabara HT, Ibrahim SS, Babandi A, M. Ya'u, et al. Isolation and Characterization of Molybdate-reducing Enterobacter cloacae from Agricultural Soil in Gwale LGA Kano State, Nigeria. J Environ Microbiol Toxicol. 2019 Jul 31;7(1):1-6.

Alhassan AY, Babandi A, Uba G, Yakasai HM. Isolation and Characterization of Molybdenum-reducing Pseudomonas sp. from Agricultural Land in Northwest-Nigeria. J Biochem Microbiol Biotechnol. 2020 Jul 31;8(1):23-8.

Shukor MY, Shamaan NA, Syed MA, Lee CH, Karim MIA. Characterization and quantification of molybdenum blue production in Enterobacter cloacae strain 48 using 12-molybdophosphate as the reference compound. Asia-Pac J Mol Biol Biotechnol. 2000;8(2):167-72.

Shukor MY, Syed MA, Lee CH, Karim MIA, Shamaan NA. A method to distinguish between chemical and enzymatic reduction of molybdenum in Enterobacter cloacae strain 48. Malays J Biochem. 2002;7:71-2.

Sugiura Y, Hirayama Y. Structural and electronic effects on complex formation of copper(II) and nickel(II) with sulfhydryl-containing peptides. Inorg Chem. 1976;15(3):679-82.

Aravindhan R, Naveen N, Anand G, Rao JR, Nair BU. Kinetics of biodegradation of phenol and a polyphenolic compound by a mixed culture containing Pseudomonas Aeruginosa and Bacillus Subtilis. Appl Ecol Environ Res. 2014;12(3):615-25.

Folsom BR, Chapman PJ, Pritchard PH. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Appl Environ Microbiol. 1990;56(5):1279-85.

Hasan SA, Jabeen S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol Biotechnol Equip. 2015;29(1):45-53.

Tomasi I, Artaud I, Bertheau Y, Mansuy D. Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: Determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol. 1995;177(2):307-11.

Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V. Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater. 2006;129(1-3):216-22.

Bai J, Wen JP, Li HM, Jiang Y. Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem. 2007;42(4):510-7.

Kiliç NK. Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters. Int Biodeterior Biodegrad. 2009;63(6):778-81.

Ahmad SA, Syed MA, Arif NM, Shukor MYA, Shamaan NA. Isolation, identification and characterization of elevated phenol degrading Acinetobacter sp. strain AQ5NOL 1. Aust J Basic Appl Sci. 2011;5(8):1035-45.

Yadzir ZHM, Shukor MY, Nazir MS, Abdullah MA. Characterization and identification of newly isolated Acinetobacter baumannii strain Serdang 1 for phenol removal. In 2012. p. 223-8.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Downloads

Published

2022-07-31

How to Cite

Rusnam, ., Gusmanizar, N., Rahman, M. F., & Yasid, N. A. (2022). Characterization of a Molybdenum-reducing and Phenol-degrading Pseudomonas sp. strain Neni-4 from soils in West Sumatera, Indonesia. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 6(1), 1–8. https://doi.org/10.54987/bessm.v6i1.670

Issue

Section

Articles