Prediction of Cumulative Death Cases in Nigeria Due to COVID-19 Using Mathematical Models
DOI:
https://doi.org/10.54987/bessm.v4i1.528Keywords:
COVID-19, SARS-CoV-2, MMF Model, Nigeria, KineticsAbstract
In this paper, we present various growth models such as Von Bertalanffy, Baranyi-Roberts, Morgan-Mercer-Flodin (MMF), modified Richards, modified Gompertz, modified Logistics and Huang in fitting and evaluating the COVID-19 epidemic pattern as of 15 July 2020 in the form of the total number of SARS-CoV-2 deaths in Nigeria. The MMF model was found to be the best model having the highest adjusted R2 value and lowest RMSE value. The values for the Accuracy and Bias Factors were near unity (1.0). The parameters derived from the MMF model include maximum growth rate (log) of 0.02 (95% CI from 0.02 to 0.03), curve constant (d) that affects the infection point of 1.61 (95% CI from 1.42 to 1.79) and maximal total number of death cases (Ymax) of 1,717 (95% CI from 1,428 to 2,123). The model estimated that the total number of death cases for Nigeria on the coming 15th of August and 15th of September 2020 were 940 (95% CI of 847 to 1,043) and 1,101 (95% CI of 968 to 1,252), respectively. The predictive ability of the model employed in this study is a powerful tool for epidemiologist to monitor and assess the severity of COVID-19 in Nigeria in months to come. However, like any other model, these values need to be taken with caution because of the COVID-19 uncertainty situation locally and globally.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).