River Monitoring of Mercury using a novel Molybdenum-Reducing Enzyme assay

Authors

  • Othman . A.R Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • S.A. Ahmad Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • B. Gunasekaran Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • M.I.E. Halmi Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • N.A. Shamaan Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 13th Floor, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
  • M.A. Syed Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • M.Y. Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.54987/bessm.v2i1.121

Keywords:

Molybdate reduction; Molybdenum blue; Inhibitive assay; Mercury;

Abstract

An inhibitive assay for mercury using a molybdenum-reducing enzyme assay system from Serratia sp. Strain DRY8 is presented. Mercury showed a sigmoidal inhibition curve with a calculated IC50 using the four-parameter logistic model of 2.101 mg l-1. The limit of detection (LOD) and limit of quantitation (LOQ) for mercury were 0.021 and 0.237 mg l-1, respectively. Other heavy metals tested at the final concentrations of 5.0 mg l-1 were not inhibitory to the assay. The enzyme requires 12-molybdophosphoric acid as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme in the crude extract converted the yellowish solution into a deep blue solution with a maximum peak at 865 nm and a shoulder at 710 nm. The comparative IC50 (concentration causing 50% inhibition) data for lead for different toxicity tests show that the IC50 value for mercury was lower than the synthetic activated sludge assay and within the range of the Spirillum volutans and the dehydrogenase activity assays. A water sample from the Juru Industrial estate gave positive toxicity results with mercury far exceeding the maximum permissible concentrations allowed by the Malaysian Department of Environment. The waters from tap, a forest reserve, and a recreational area gave negative toxicity for mercury in agreement with ICP-AES results which showed the presence of heavy metals at the non-detectable levels.

Published

2014-07-30

How to Cite

A.R, O. ., Ahmad, S., Gunasekaran, B., Halmi, M., Shamaan, N., Syed, M., & Shukor, M. (2014). River Monitoring of Mercury using a novel Molybdenum-Reducing Enzyme assay. Bulletin of Environmental Science and Sustainable Management (e-ISSN 2716-5353), 2(1), 30–35. https://doi.org/10.54987/bessm.v2i1.121

Issue

Section

Articles