Activation Energy, Temperature Coefficient and Q10 Value Estimations of the Growth of an SDS-degrading Bacterium

Authors

  • Mohd Fadhil Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.

DOI:

https://doi.org/10.54987/jemat.v11i2.892

Keywords:

SDS-degrading bacterium, Temperature, Arrhenius plot, Breakpoint, Enterobacter sp.

Abstract

This research delves into how temperature affects the growth rates of bacteria in relation to the breakdown of sodium dodecyl sulfate (SDS) by types of microbes. A graph resembling a Chevron pattern, which plots the growth rate against temperature (1/T), revealed a change at 32.19 °C, indicating a crucial temperature for optimizing bacterial growth. Through regression analysis, activation energies were determined to be 65.10±10.83 kJ/mol for temperatures between 20 30°C and 36.31±0.97 kJ/mol for temperatures between 35 45°C showing that metabolic demands are higher at temperatures. The theta value was calculated to be 1.06, which closely aligns with known values for processes hinting at moderate temperature sensitivity. These results highlight the impact of temperature on microbial metabolic efficiency, requiring energy at lower temperatures due to increased enzyme activity demands while operating more efficiently at higher temperatures with lower energy needs. This study emphasizes incorporating temperature-related factors like Q10 and theta values into models that predict bioremediation strategies. Understanding these dynamics can improve the success of bioremediation efforts by ensuring breakdown in diverse environmental conditions. The insights gained from this research can inform management practices. Advance the development of biotechnological applications sensitive to temperature variations.

References

Ohtake H, Fujii E, Toda K. Bacterial Reduction of Hexavalent Chromium: Kinetic Aspects of Chromate Reduction by Enterobacter cloacae HO1. Biocatalysis. 1990 Jan 1;4(2-3):227-35.

Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J Appl Bacteriol. 1991;71(5):452-9.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006 Nov 1;22(11):1205-13.

Gafar AA, Manogaran M, Yasid NA, Halmi MIE, Shukor MY, Othman AR. Arrhenius plot analysis, temperature coefficient and Q10 value estimation for the effect of temperature on the growth rate on acrylamide by the Antarctic Bacterium Pseudomonas sp. strain DRYJ7. J Environ Microbiol Toxicol. 2019 Jul 31;7(1):27-31.

Shukor MY. Arrhenius Plot Analysis of the Temperature Effect on the Biodegradation Rate of 2-chloro-4-nitrophenol. Biog J Ilm Biol. 2020 Dec 30;8(2):219-24.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Serratia marcescens strain DRY6. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):21-6.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Acinetobacter calcoaceticus strain Dr Y12. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):20-6.

Uba G, Yakasai HM, Babandi A, Ya'u M, Mansur A. The Effect of Temperature on the Rate of Molybdenum Reduction by Enterobacter sp. strain Dr.Y13: Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):1-6.

Yakasai HM, Safiyanu AJ, Ibrahim S, Babandi A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on Molybdenum Reduction Rate by Pantoea sp. strain HMY-P4. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):16-20.

Singh RK, Kumar S, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40(2):293-303.

Reardon KF, Mosteller DC, Bull Rogers JD. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F 1. Biotechnol Bioeng. 2000;69(4):385-400.

Onysko KA, Budman HM, Robinson CW. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol Bioeng. 2000 Nov 5;70(3):291-9.

Angelova B, Avramova T, Stefanova L, Mutafov S. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation. 2008;19(3):387-93.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van't Riet K. Modeling of bacterial growth as a function of temperature. Appl Environ Microbiol. 1991 Apr;57(4):1094-101.

Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13. Nova Biotechnol Chim. 2016 Dec 1;15(2):166-81.

Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Für Phys Chem. 1889 Jan 1;

Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology. 2005;151(12):4139-51.

Aisami A, Yasid NA, Johari WLW, Shukor MY. Estimation of the Q10 value; the temperature coefficient for the growth of Pseudomonas sp. aq5-04 on phenol. Bioremediation Sci Technol Res. 2017 Jul 31;5(1):24-6.

Benedek P, Farkas P. Influence of temperature on the reactions of the activated sludge process. In: Murphy RS, Nyquist D, Neff PW, editors. Proceedings of the international symposium on water pollution control in cold climates. University of Alaska, Washington, DC: Environmental Protection Agency; 1970.

Reynolds JH, Middlebrooks EJ, Procella DB. Temperature-toxicity model for oil refinery waste. J Environ Eng Div. 1974;100(3):557-76.

Melin ES, Jarvinen KT, Puhakka JA. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res. 1998 Jan 1;32(1):81-90.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. Modeling biodegradation of nonylphenol. Water Air Soil Pollut Focus. 2008 Aug 1;8(3-4):395-404.

Bandyopadhyay SK, Chatterjee K, Tiwari RK, Mitra A, Banerjee A, Ghosh KK, et al. Biochemical studies on molybdenum toxicity in rats: effects of high protein feeding. Int J Vitam Nutr Res. 1981;51(4):401-9.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Guo J, Lian J, Xu Z, Xi Z, Yang J, Jefferson W, et al. Reduction of Cr(VI) by Escherichia coli BL21 in the presence of redox mediators. Bioresour Technol. 2012 Nov 1;123:713-6.

Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech. 2012 Mar;2(1):79-87.

Zhao R, Guo J, Song Y, Chen Z, Lu C, Han Y, et al. Mediated electron transfer efficiencies of Se(IV) bioreduction facilitated by meso-tetrakis (4-sulfonatophenyl) porphyrin. Int Biodeterior Biodegrad. 2020 Feb 1;147:104838.

dos Santos AB, Cervantes FJ, van Lier JB. Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Appl Microbiol Biotechnol. 2004 Mar;64(1):62-9.

Dafale N, Wate S, Meshram S, Nandy T. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. J Hazard Mater. 2008 Nov 30;159(2):319-28.

Chen G, Huang M hong, Chen L, Chen D hui. A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. Int Biodeterior Biodegrad. 2011 Sep 1;65(6):790-6.

Chang JS, Kuo TS. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol. 2000 Nov 1;75(2):107-11.

Behzat B. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa. Water Sci Technol. 2015 Jul 6;72(8):1266-73.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006;22(11):1205-13.

Yakasai HM, Zin NSM, Shukor MY. Activation Energy, Temperature Coefficient and Q10 Value Estimations of the Growth of 2,4-dinitrophenol-degrading Bacterium on 2,4-dinitrophenol. J Environ Bioremediation Toxicol. 2022 Aug 5;5(1):38-44.

Rusnam, Nasution FI, Shukor MY, Abubakar A. The Effect of Temperature on the Specific Growth Rate of Bacillus circulans strain Neni-10 on Metanil Yellow: Determination of Activation energy, Temperature Coefficient and Q10 Value. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2023 Jul 31;7(1):1-6.

Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151-91.

Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 2004 Jul;6(2):125-36.

Han MH. Non-linear Arrhenius plots in temperature-dependent kinetic studies of enzyme reactions: I. Single transition processes. J Theor Biol. 1972 Jun 1;35(3):543-68.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Stannard CJ, Williams AP, Gibbs PA. Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiol. 1985;2(2):115-22.

McMeekin TA, Chandler RE, Doe PE, Garland CD, Olley J, Putro S, et al. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J Appl Bacteriol. 1987;62(6):543-50.

Fernández A, Collado J, Cunha LM, Ocio MJ, Martínez A. Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. Int J Food Microbiol. 2002;77(1-2):147-53.

Ucun H, Bayhan YK, Kaya Y. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn. J Hazard Mater. 2008 May 1;153(1):52-9.

Tchobanoglous G, Schoeder ED. Water quality: Characteristics, modeling and modification. 1 edition. Reading, Mass: Pearson; 1985. 780 p.

Melin ES, Ferguson JF, Puhakka JA. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Appl Microbiol Biotechnol. 1997 Jun 1;47(6):675-82.

Kuhn HJ, Cometta S, Fiechter A. Effects of growth temperature on maximal specific growth rate, yield, maintenance, and death rate in glucose-limited continuous culture of the thermophilic Bacillus caldotenax. Eur J Appl Microbiol Biotechnol. 1980;10(4):303-15.

Ceuterick F, Peeters J, Heremans K, De Smedt H, Olbrechts H. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. Eur J Biochem. 1978;87(2):401-7.

Mutafov SB, Minkevich IG. Temperarture effect on the growth of Candida utilis VLM-Y-2332 on ethanol. Comptes Rendus Acad Bulg Sci. 1986;39:71-4.

Funamizu N, Takakuwa T. Simulation analysis of operating conditions for a municipal wastewater treatment plant at low temperatures. In: Margesin R, Schinner F, editors. Biotechnological Applications of Cold-Adapted Organisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 203-20.

Yakasai HM, Yasid NA, Shukor MY. Temperature Coefficient and Q10 Value Estimation for the Growth of Molybdenum-reducing Serratia sp. strain HMY1. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):22-4.

Oh YS, Kim SJ. Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon. Korean J Microbiol Korea R. 1989;26(4):339-47.

Gibbs CF, Davis SJ. The rate of microbial degradation of oil in a beach gravel column. Microb Ecol. 1976 Mar 1;3(1):55-64.

Malina G, Grotenhuis JTC, Rulkens WH. The effect of temperature on the bioventing of soil contaminated with toluene and decane. J Soil Contam. 1999 Jul 1;8(4):455-80.

Atlas RM, Bartha R. Fate and effects of polluting petroleum in the marine environment. In: Gunther FA, editor. Residue Reviews. Springer New York; 1973. p. 49-85. (Residue Reviews).

Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extrem Life Extreme Cond. 2005 Dec;9(6):461-70.

Downloads

Published

31.12.2023

How to Cite

Rahman, M. F., Manogaran, M. ., Yakasai, H. M. ., & Abubakar, A. (2023). Activation Energy, Temperature Coefficient and Q10 Value Estimations of the Growth of an SDS-degrading Bacterium. Journal of Environmental Microbiology and Toxicology, 11(2), 57–63. https://doi.org/10.54987/jemat.v11i2.892

Issue

Section

Articles