Growth on Sodium Dodecyl Sulphate (SDS) by a Bacterium Isolated from Langkawi UNESCO Kilim Karst Geoforest Park

Authors

  • Motharasan Manogaran Malaysia Genome and Vaccine Institute (MGVI) National Institute of Biotechnology Malaysia (NIBM) Jalan Bangi, 43000 Kajang, Selangor, Malaysia.
  • Mohd I Halmi Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Mohd Badrin Hanizam Abdul Rahim Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Mohd Ezuan Khayat Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Nur Adeela Yasid Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Mohd Yunus Shukor Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v11i2.891

Keywords:

Pseudomonas sp., Biodegradation, sodium dodecyl sulphate, UNESCO site, heavy metal toxicity

Abstract

The breakdown of sodium dodecyl sulphate (SDS) in contaminated environments is crucial for reducing its ecological impact. We examined the influence of various environmental parameters on the growth and SDS degradation efficiency of Pseudomonas sp. strain UPM-Langkawi 2. The study explored the effects of temperature, pH, nitrogen sources, SDS concentration, and heavy metal presence on Pseudomonas sp. growth and activity. Growth rates were analyzed across temperatures from 20 to 50°C, pH values from 6.5 to 7.5, and various nitrogen sources (ammonium sulphate, ammonium chloride, potassium nitrite, and potassium nitrate) in BS media supplemented with SDS. SDS concentrations ranging from 0.1 to 2.5 g/L and heavy metals at 1 mg/L were also tested. Optimal growth and SDS degradation occurred at temperatures between 25 and 35°C and a pH range of 6.5 to 7.5. Ammonium sulphate at 5 g/L was identified as the most effective nitrogen source for supporting bacterial growth. Pseudomonas sp. achieved the highest growth at SDS concentrations between 0.75 and 1.5 g/L. Heavy metals significantly influenced bacterial growth, with mercury showing the most substantial inhibitory effect, followed by silver, copper, and chromium. Environmental parameters critically influence the biodegradation potential of Pseudomonas sp. Optimizing these conditions can enhance SDS degradation, offering a viable solution for bioremediation in SDS-polluted sites. Future research should focus on detailed kinetic modeling and field applications to validate these findings under natural conditions.

References

Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J. Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere. 2005 Mar;58(9):1249-53.

Chukwu LO, Odunzeh CC. Relative toxicity of spent lubricant oil and detergent against benthic macro-invertebrates of a west African estuarine lagoon. J Environ Biol. 2006 Jul;27(3):479-84.

Kumar M, Trivedi SP, Misra A, Sharma S. Histopathological changes in testis of the freshwater fish, Heteropneustes fossilis (Bloch) exposed to linear alkyl benzene sulphonate (LAS). J Environ Biol. 2007 Jul;28(3):679-84.

Pettersson A, Adamsson M, Dave G. Toxicity and detoxification of Swedish detergents and softener products. Chemosphere. 2000;41(10):1611-20.

Cserháti T, Forgács E, Oros G. Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28(5):337-48.

Rosety M, Ribelles A, Rosety-Rodriguez M, Carrasco C, Ordonez FJ, Rosety JM, et al. Morpho-histochemical study of the biological effects of sodium dodecyl sulphate on the digestive gland of the Portuguese oyster. Histol Histopathol. 2000;15(4):1137-43.

Badmus SO, Amusa HK, Oyehan TA, Saleh TA. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut Res Int. 2021;28(44):62085-104.

Johnson P, Trybala A, Starov V, Pinfield VJ. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci. 2021 Feb 1;288:102340.

Cserháti T, Forgács E, Oros G. Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28(5):337-48.

Sandbacka M, Christianson I, Isomaa B. The acute toxicity of surfactants on fish cells, Daphnia magna and fish-A comparative study. Toxicol In Vitro. 2000 Feb 1;14(1):61-8.

Mondal B, Adak A, Datta P. Degradation of anionic surfactant in municipal wastewater by UV-H2O2: Process optimization using response surface methodology. J Photochem Photobiol Chem. 2019 Feb 1;375.

Nedi S, Effendi I, Elizal, Fuad A. Correlation of dissolved detergent content with diatom abundance in Air Hitam strait waters, Meranti island regency, Riau. IOP Conf Ser Earth Environ Sci. 2018 Dec;216(1):012017.

Kundu S, Coumar MV, Rajendiran S, Rao A, Rao AS. Phosphates from detergents and eutrophication of surface water ecosystem in India. Curr Sci. 2015;108(7):1320-5.

Mohamed B. Effects of tourism activities and development on the physical environment of Kilim River, Langkawi, Malaysia. Malays For. 2012 Jan 1;75:81-6.

Tajam J, Kamal mohd lias. Marine Environmental Risk Assessment of Sungai Kilim, Langkawi, Malaysia: Heavy Metal Enrichment Factors in Sediments as Assessment Indexes. Int J Oceanogr. 2013 Jan 1;2013.

Tyler L. Trouble in paradise: Langkawi struggles to hold onto Unesco geopark status [Internet]. South China Morning Post. 2014 [cited 2024 Apr 6]. Available from: https://www.scmp.com/magazines/post-magazine/article/1577608/langkawi-victim-its-own-success

Idris SMM. Mangrove forest in Kilim Geo Park under threat [Internet]. Free Malaysia Today. 2016 [cited 2024 Apr 6]. Available from: https://www.freemalaysiatoday.com/category/opinion/2016/05/27/mangrove-forest-in-kilim-geo-park-under-threat/

Lee LM. Langkawi getting trashed [Internet]. R.AGE. 2016 [cited 2024 Apr 6]. Available from: https://www.rage.com.my/langkawi-getting-trashed/

Halim M, Ahmad A, Abd Rahman M, Mat Amin Z, Abdul Khanan MF, Musliman I, et al. Land use/land cover mapping for conservation of UNESCO Global Geopark using object and pixel-based approaches. IOP Conf Ser Earth Environ Sci. 2018 Jul 31;169:012075.

Dhouib A, Hamad N, Hassaïri I, Sayadi S. Degradation of anionic surfactants by Citrobacter braakii. Process Biochem. 2003 Mar 28;38(8):1245-50.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergeys Man Determinative Bacteriol. 1994;

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Abd Shukor MS, Aftab K, Norazlina M, Effendi Halmi M, Sheikh A, Shukor M. Isolation of a Novel Molybdenum-reducing and Azo Dye Decolorizing Enterobacter sp. Strain Aft-3 from Pakistan. Chiang Mai Univ J Nat Sci. 2016 Jan 1;15:95-114.

Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med. 2015 Feb 5;15:11.

Arora J, Ranjan A, Chauhan A, Rajput VD, Sushkova S, Prazdnova EV, et al. A Novel Study on Anionic Surfactant Degradation Potential of Psychrophillic and Psychrotolerant Pseudomonas spp. Identified from Surfactant-contaminated River Water. Appl Biochem Biotechnol [Internet]. 2023 Jul 19 [cited 2023 Aug 16]; Available from: https://doi.org/10.1007/s12010-023-04647-y

Chaturvedi V, Kumar A. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran J Microbiol. 2011;3(1):47-53.

Zubkov IN, Nepomnyshchiy AP, Kondratyev VD, Sorokoumov PN, Sivak KV, Ramsay ES, et al. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J Microbiol. 2021 Dec 1;59(12):1104-11.

Chaturvedi V, Kumar A. Isolation of sodium dodecyl sulfate degrading strains from a detergent polluted pond situated in Varanasi city, India. Vol. 8, Journal of Cell and Molecular Biology. 2010.

Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminated soil: A review. Eng Geol. 2001 Jun;60(1-4):371-80.

Zeng G, Fu H, Zhong H, Yuan X, Fu M, Wang W, et al. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation. 2007 Jun;18(3):303-10.

Payne WJ, Feisal VE. Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol. 1963;11:339-44.

Syed M, Mahamood M, Shukor M, Shamaan NA, others. Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1. Aust J Basic Appl Sci. 2010;4(10):5000-11.

Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad. 2011;65(7):961-71.

Ambily PS, Jisha MS. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. J Environ Biol. 2012;33(4):717-20.

Ambily PS, Jisha MS. Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311). J Environ Biol. 2014;35(5):827-31.

Usharani J, Rajasekar T, Deivasigamani B. Isolation and characterizatiosn of SDS (Sodium Dodecyl Sulfate) degrading organisms from SDS contaminated areas. Sci Rep. 2012;1:148.

Shahbazi R, Kasra-Kermanshahi R, Gharavi S, Moosavi- Nejad Z, Borzooee F. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity. Iran J Microbiol. 2013;5(2):153-8.

Venkatesh C. A plate assay method for isolation of bacteria having potent Sodium Doedecyl Sulfate (SDS) degrading ability. Res J Biotechnol. 2013;8(2):27-31.

Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ Sci Pollut Res. 2014;21(12):7413-24.

Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13. Nova Biotechnol Chim. 2016 Dec 1;15(2):166-81.

Icgen B, Salik SB, Goksu L, Ulusoy H, Yilmaz F. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters. Water Sci Technol J Int Assoc Water Pollut Res. 2017 Nov;76(9-10):2357-66.

Furmanczyk EM, Lipinski L, Dziembowski A, Sobczak A. Genomic and Functional Characterization of Environmental Strains of SDS-Degrading Pseudomonas spp., Providing a Source of New Sulfatases. Front Microbiol. 2018;9:1795.

Othman AR, Yusof MT, Shukor MY. Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):9-14.

Abboud MM, Khleifat KM, Batarseh M, Tarawneh KA, Al-Mustafa A, Al-Madadhah M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol. 2007 Sep 3;41(4):432-9.

Hosseini F, Malekzadeh F, Amirmozafari N, Ghaemi N. Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int J Environ Sci Technol. 2007;4(1):127-32.

Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA. Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol. 2009 Jan;30(1):129-34.

Khleifat KM. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 2006 Sep;41(9):2010-6.

Khleifat KM, HALASAH RA, Tarawneh KA, HALASAH ZINA, SHAWABKEH REYAD, WEDYAN MA. Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agric Biol Agric Biol. 2010;12:17-25.

Margesin R, Schinner F. Biodegradation of the anionic surfactant sodium dodecyl sulfate at low temperatures. Int Biodeterior Biodegrad. 1998 Mar;41(2):139-43.

Davey KR. Modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol. 1994;23(3-4):295-303.

Booth IR. Regulation of cytoplasmic pH in bacteria. Vol. 49, Microbiological Reviews. 1985. p. 359-78.

Fritsche W, Hofrichter M. Aerobic Degradation by Microorganisms. In: Biotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008. p. 144-67.

Roig MG, Pedraz MA, Sanchez JM, Huska J, Tóth D. Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. J Mol Catal - B Enzym. 1998 Aug 3;4(5-6):271-81.

Odahara T. Stability and solubility of integral membrane proteins from photosynthetic bacteria solubilized in different detergents. Biochim Biophys Acta - Biomembr. 2004 Jan 28;1660(1-2):80-92.

Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R. Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol. 2005 May;50(5):233-7.

Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. Vol. 35, FEMS Microbiology Reviews. 2011. p. 299-323.

Rathnayake IVN, Megharaj M, Bolan N, Naidu R. Tolerance of Heavy Metals by Gram Positive Soil Bacteria. Int J Bioeng Life Sci. 2009;3(5):270-4.

Abarca RRM, Gaudio MT, Chakraborty S, Bhattacherjee P. Metals toxic pollutants in the environment: Anthropogenic and geological causes and remediation. In: Current Trends and Future Developments on (Bio-) Membranes: Membranes in Environmental Applications [Internet]. 2019. p. 109-24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089152941&doi=10.1016%2fB978-0-12-816778-6.00006-0&partnerID=40&md5=9fc810f67f4886e40ddb63ebbe3ab8f0

Von Rozycki T, Nies DH. Cupriavidus metallidurans: Evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2008;

Antonovich VP. Speciation of mercury in environmental samples. J Anal Chem. 1996;51(2):106-13.

Downloads

Published

31.12.2023

How to Cite

Manogaran, M. ., Halmi, M. I., Rahim, M. B. H. A., Khayat, M. E., Yasid, N. A., & Shukor, M. Y. (2023). Growth on Sodium Dodecyl Sulphate (SDS) by a Bacterium Isolated from Langkawi UNESCO Kilim Karst Geoforest Park. Journal of Environmental Microbiology and Toxicology, 11(2), 50–56. https://doi.org/10.54987/jemat.v11i2.891

Issue

Section

Articles