Primary Mathematical Modeling of the Growth of Diesel by a Bacterium Isolated from a Hydrocarbon-contaminated Soil

Authors

  • . Rusnam Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • S. Syafrawati Public Health Sciences Study Program, Faculty of Public Health, Andalas University, Padang, 25163, Indonesia
  • Mohd Fadhil Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Fachri Ibrahim Nasution Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Aisami Abubakar Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.

DOI:

https://doi.org/10.54987/jemat.v11i2.890

Keywords:

Diesel-degrading bacterium, Primary models, modified Gompertz, Baranyi-Roberts, Pseudomonas sp.

Abstract

Mathematical modeling of microbial growth via nonlinear regression is essential for determining key parameters such as the maximum specific growth rate, which are foundational for secondary modeling. Models such as modified Gompertz, modified Logistic, modified Richards, Buchanan-3-phase, Baranyi-Roberts, modified Schnute, von Bertalanffy, Morgan-Mercer-Flodin (MMF), and Huang elucidate the impact of substrates on bacterial growth and biotransformation processes, vital for biotechnological applications like wastewater treatment and bioremediation. A previously isolated diesel-degrading Pseudomonas sp. strain Neni-4 growth on diesel was modeled using the aforementioned primary models. Experimental data showed that diesel concentrations from 0.25 to 3.5% (v/v) are toxic, slowing bacterial growth and increasing lag periods from 3 to 15 hours. Among the primary models tested, the Baranyi-Roberts model provided the best fit, evidenced by a high adjusted coefficient of determination, low RMSE and AICc values, and favorable accuracy (AF) and bias factors (BF). The reliability of the Baranyi-Roberts model underscores its suitability for modeling bacterial growth under toxic conditions, offering valuable insights for optimizing biotechnological processes involving bacterial adaptation and growth under stress conditions.

References

Achmadi UF. Public health implications of environmental pollution in urban Indonesia. Asia Pac J Clin Nutr. 1996;5(3):141-4.

Palmer TA, Klein AG, Sweet ST, Montagna PA, Hyde LJ, Wade TL, et al. Anthropogenic effects on the marine environment adjacent to Palmer Station, Antarctica. Antarct Sci. 2022 Feb;34(1):79-96.

Ibrahim Y, Abdel-Mongy M, Shukor MS, Hussein S, Ling APK, Shukor MY. Characterization of a molybdenum-reducing bacterium with the ability to degrade phenol, isolated in soils from Egypt. Biotechnologia. 2015;96(3):234-45.

Behera ID, Nayak M, Mishra A, Meikap BC, Sen R. Strategic implementation of integrated bioaugmentation and biostimulation for efficient mitigation of petroleum hydrocarbon pollutants from terrestrial and aquatic environment. Mar Pollut Bull. 2022 Apr 1;177:113492.

Zhang T, Liu Y, Zhong S, Zhang L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere. 2020 May 1;246:125726.

Ossai IC, Ahmed A, Hassan A, Hamid FS. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ Technol Innov. 2020 Feb 1;17:100526.

Barron MG, Vivian DN, Heintz RA, Yim UH. Long-Term Ecological Impacts from Oil Spills: Comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environ Sci Technol. 2020 Jun 2;54(11):6456-67.

Scarlett AG, Nelson RK, Gagnon MM, Holman AI, Reddy CM, Sutton PA, et al. MV Wakashio grounding incident in Mauritius 2020: The world's first major spillage of Very Low Sulfur Fuel Oil. Mar Pollut Bull. 2021 Oct 1;171:112917.

Saidu K, Baba A, Atta H. Diesel-Degrading Potential of Pseudomonas putida Isolated from Effluent of a Petroleum Refinery in Nigeria. UMYU J Microbiol Res UJMR. 2019 Dec 1;4:105-12.

Pranowo PP, Titah HS. Isolation and screening of diesel-degrading bacteria from the diesel contaminated seawater at Kenjeran Beach, Surabaya. EnvironmentAsia. 2016;9(2):165-9.

Dahalan FA, Yunus I, Johari WLW, Shukor MY, Halmi MIE, Shamaan NA, et al. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil. J Environ Biol. 2014;35(2):399-406.

Ku Ahamad KE, Halmi MIE, Shukor MY, Wasoh H, Amir S, Abdul Rachman AR, et al. Isolation and characterization of a heavy metal-tolerant diesel oil - degrading strain. Bull Environ Sci Manag. 2013;1(1):14-9.

Lee M, Woo SG, Ten LN. Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol. 2012;28(5):2057-67.

Hong JH, Kim J a, Choi OK, Cho KS a, Ryu HW. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol. 2005;21(3):381-4.

Yahuza S, Dan-Iya BI, Sabo IA. Modelling the Growth of Enterobacter sp. on Polyethylene. J Biochem Microbiol Biotechnol. 2020 Jul 31;8(1):42-6.

Rusnam, Yakasai HM, Rahman MF, Gusmanizar N, Shukor MY. Mathematical Modeling of Molybdenum-Blue Production from Bacillus sp. strain Neni-. Bioremediation Sci Technol Res. 2021 Jul 31;9(1):7-12.

Yakasai MH, Manogaran M. Kinetic Modelling of Molybdenum-blue Production by Bacillus sp. strain Neni-10. J Environ Microbiol Toxicol. 2020 Jul 31;8(1):5-10.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000;54(3):171-80.

Kim HW, Lee SA, Yoon Y, Paik HD, Ham JS, Han SH, et al. Development of kinetic models describing kinetic behavior of Bacillus cereus and Staphylococcus aureus in milk. Korean J Food Sci Anim Resour. 2013;33(2):155-61.

Li MY, Sun XM, Zhao GM, Huang XQ, Zhang JW, Tian W, et al. Comparison of Mathematical Models of Lactic Acid Bacteria Growth in Vacuum-Packaged Raw Beef Stored at Different Temperatures. J Food Sci. 2013;78(4):M600-4.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14(4):313-26.

Rusnam, Gusmanizar N, Rahman MF, Yasid NA. Characterization of a Molybdenum-reducing and Phenol-degrading Pseudomonas sp. strain Neni-4 from soils in West Sumatera, Indonesia. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2022 Jul 31;6(1):1-8.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987 Nov;1(5):365-74.

Halmi, MIE, ,Shukor MS, Johari W.L.W WLW, Shukor MY. Mathematical Modeling of the Growth Kinetics of Bacillus sp . on Tannery Effluent Containing Chromate. J Environ Bioremediation Toxicol. 2014;2(1):6-10.

Akaike H. Factor analysis and AIC. Psychometrika. 1987;52(3):317-32.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Aisami A, Gusmanizar N. Characterization of an acrylamide-degrading bacterium isolated from hydrocarbon sludge. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):15-9.

Mwaura AN, Mbatia BN, Muge EK, Okanya PW. Screening and Characterization of Hydrocarbonoclastic Bacteria Isolated from Oil-contaminated Soils from Auto Garages. Int J Microbiol Biotechnol. 2018 Mar 23;3(1):11.

Kesavan V, Mansur A, Suhaili Z, Salihan MSR, Rahman MFA, Shukor MY. Isolation and Characterization of a Heavy Metal-reducing Pseudomonas sp. strain Dr.Y Kertih with the Ability to Assimilate Phenol and Diesel. Bioremediation Sci Technol Res. 2018 Jul 31;6(1):14-22.

Mohamad O, Yakasai HM, Karamba KI, Halmi MIE, Rahman MF, Shukor MY. Reduction of Molybdenum by Pseudomonas aeruginosa strain KIK-11 Isolated from a Metal-contaminated Soil with Ability to Grow on Diesel and Sodium Dodecyl Sulphate. J Environ Microbiol Toxicol. 2017 Dec 31;5(2):19-26.

Vignesh R, Arularasan A, V G, Deepika C. Isolation identification and characterization of potential oil degrading bacteria from oil contaminated sites. 2016 Jan 1;

Shukor MY, Hassan NAA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, et al. Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. J Environ Biol. 2009;30(1):1-6.

Sadouk Z, Tazerouti A, Hacene H. Biodegradation of diesel oil and production of fatty acid esters by a newly isolated Pseudomonas citronellolis KHA. World J Microbiol Biotechnol. 2009;25(1):65-70.

Mehdi H, Giti E. Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad. 2008;62(2):170-8.

Márquez-Rocha FJ, Olmos-Soto J, Concepción Rosano-Hernández M, Muriel-García M. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int Biodeterior Biodegrad. 2005 Jan;55(1):17-23.

Baryshnikova LM, Grishchenkov VG, Arinbasarov MU, Shkidchenko AN, Boronin LM. Biodegradation of oil products by individual degrading strains and their associations in liquid media. Appl Biochem Microbiol. 2001;37(5):463-8.

Jimoh AA, Lin J. Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. Int J Environ Sci Technol. 2019;16(8):4143-58.

Khayat ME, Rahman MFA, Shukor MS, Ahmad SA, Shamaan NA, Shukor MY. Characterization of a molybdenum-reducing Bacillus sp. strain khayat with the ability to grow on SDS and diesel. Rendiconti Lincei. 2016;Article in Press.

Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Mukhlisin M, et al. Biodegradation of diesel by bacteria isolated from Scirpus mucronatus rhizosphere in diesel-contaminated sand. Adv Sci Lett. 2015;21(2):140-3.

Cisneros-de La Cueva S, Martínez-Prado MA, Rojas-Contreras JA, Medrano-Roldán H, Murillo-Martínez MA. Isolation and characterization of a novel strain, Bacillus sp. KJ629314, with a high potential to aerobically degrade diesel [Aislamiento y caracterizaci on de una nueva cepa, Bacillus sp. KJ629314, conun alto potencial en la degradaci on aerobica de diesel]. Rev Mex Ing Qumica. 2014;13(2):393-403.

Torres LG, Rojas N, Bautista G, Iturbe R. Effect of temperature, and surfactant's HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochem. 2005;40(10):3296-302.

Winayanuwattikun P, Piriyakananon K, Wongsathonkittikun P, Charoenpanich J. Immobilization of a thermophilic solvent-stable lipase from Acinetobacter baylyi and its potential for use in biodiesel production. ScienceAsia. 2014;40(5):327-34.

Palanisamy N, Ramya J, Kumar S, Vasanthi N, Chandran P, Khan S. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. J Environ Health Sci Eng. 2014 Dec 12;12(1):142.

Johari W. Modeling the growth curves of Acinetobacter sp. strain DRY12 grown on diesel. J Environ Bioremediation Toxicol. 2014;2(1).

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Modeling the growth curves of Acinetobacter sp. strain DRY12 grown on diesel. J Environ Bioremediation Toxicol. 2014;2(1):33-7.

Mara K a, Decorosi F b, Viti C b, Giovannetti L b, Papaleo MC a, Maida I a, et al. Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol. 2012;163(3):161-72.

Uttatree S, Winayanuwattikun P, Charoenpanich J. Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl Biochem Biotechnol. 2010;162(5):1362-76.

Baldi F, Ivoševi? N, Minacci A, Pepi M, Fani R, Svetli?i? V, et al. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol. 1999;65(5):2041-8.

Kai EX, Johari WLW, Habib S, Yasid NA, Ahmad SA, Shukor MY. The growth of the Rhodococcus sp. on diesel fuel under the effect of heavy metals and different concentrations of zinc. Adv Polar Sci. 2020 May 12;132-6.

Ahmad SA, Yasid NA, Lee GLY, Roslee AFA, Zakaria NN, Convey P, et al. Potential diesel and phenol biodegradation by the Antarctic bacterium Rhodococcus sp. strain AQ5-07. In 10-3 Midori-cho, Tachikawa, Tokyo, Japan: National Institute of Polar Research (NIPR); 2018. Available from: http://id.nii.ac.jp/1291/00015260/

Auffret MD, Yergeau E, Labbé D, Fayolle-Guichard F, Greer CW. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl Microbiol Biotechnol. 2015;99(5):2419-30.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Zhukov DV, Murygina VP, Kalyuzhnyi SV. Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis. Appl Biochem Microbiol. 2007;43(6):587-92.

Ueno A, Ito Y, Yumoto I, Okuyama H. Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol. 2007;23(12):1739-45.

Lee M, Kim MK, Singleton I, Goodfellow, Lee ST. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microbiol. 2006;100(2):325-33.

Bicca FC, Fleck LC, Ayub MAZ. Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol. 1999;30(3):231-6.

Halmi MIE, Wasoh H, Sukor S, Ahmad SA, Yusof MT, Shukor MY. Bioremoval of molybdenum from aqueous solution. Int J Agric Biol. 2014;16(4):848-50.

Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994;23(3-4):277-94.

Agarry SE, Audu TOK, Solomon BO. Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol. 2009;6(3):443-50.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Halmi MIE, Shukor MS, Masdor NA, Shamaan NA, Shukor MY. Testing the normality of residuals on regression model for the growth of Paracoccus sp. SKG on acetonitrile. J Environ Bioremediation Toxicol. 2015;3(1):15-7.

Rusnam, Gusmanizar N, Shukor MY, Dan-Iya BI. Modelling the Effect of Copper on the Growth Rate of Enterobacter sp. strain Neni-13 on SDS. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):10-5.

Benkhennouche-Bouchene H, Mahy JG, Lambert SD, Hayoun B, Deflaoui O, Bourouina M, et al. Statistical modeling and optimization of Escherichia coli growth parameters for the biological treatment of phenol. Biocatal Agric Biotechnol. 2021 Jul 1;34:102016.

Van Impe JF, Poschet F, Geeraerd AH, Vereecken KM. Towards a novel class of predictive microbial growth models. Int J Food Microbiol. 2005;100(1-3):97-105.

Zwietering MH, De Wit JC, Cuppers HGAM, Van't Riet K. Modeling of bacterial growth with shifts in temperature. Appl Environ Microbiol. 1994;60(1):204-13.

Zwietering MH, Rombouts FM, Van 't Riet K. Some aspects of modelling microbial quality of food. Food Control. 1993;4(2):89-96.

Baranyi J. Mathematics of predictive food microbiology. Int J Food Microbiol. 1995;26(2):199-218.

Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J Appl Bacteriol. 1991;71(5):452-9.

Perni S, Andrew PW, Sharma G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food Microbiol. 2005;491-495(6):491-5.

Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994;23(3-4):277-94.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Baranyi J. Mathematics of predictive food microbiology. Int J Food Microbiol. 1995;26(2):199-218.

Coleman ME, Tamplin ML, Phillips JG, Marmer BS. Influence of agitation, inoculum density, pH, and strain on the growth parameters of Escherichia coli O157:H7 - Relevance to risk assessment. Int J Food Microbiol. 2003;83(2):147-60.

Fujikawa H. Development of a new logistic model for microbial growth in foods. Biocontrol Sci. 2010;15(3):75-80.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

Van Impe JF, Poschet F, Geeraerd AH, Vereecken KM. Towards a novel class of predictive microbial growth models. Int J Food Microbiol. 2005;100(1-3):97-105.

Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, et al. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. J Pet Sci Eng. 2011;78(3-4):679-86.

Tevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresour Technol. 2012;119:419-24.

Bolker BM. Ecological Models and Data in R. Princeton, N.J: Princeton University Press; 2008. 408 p.

Downloads

Published

31.12.2023

How to Cite

Rusnam, ., Syafrawati, S., Rahman, M. F., Yasid, N. A., Nasution, F. I. ., Yakasai, H. M. ., & Abubakar, A. (2023). Primary Mathematical Modeling of the Growth of Diesel by a Bacterium Isolated from a Hydrocarbon-contaminated Soil. Journal of Environmental Microbiology and Toxicology, 11(2), 35–44. https://doi.org/10.54987/jemat.v11i2.890

Issue

Section

Articles