Characterisation of a Bacillus sp. Isolated from Soils Near Lake Maninjau Capable of Degrading Glyphosate

Authors

  • . Rusnam
  • Mohd Fadhil Rahman Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Mohd Ezuan Khayat Agribiotechnology Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Fachri Ibrahim Nasution Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • A.M. Umar Department of Biological Sciences, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.

DOI:

https://doi.org/10.54987/jemat.v11i1.886

Keywords:

Bioremediation, Glyphosate, Pollution, Bacillus sp., Heavy metal

Abstract

Glyphosate and other soil toxins can be ecologically and financially sustainable bioremediation. When it pollutes the environment, the herbicide glyphosate—used extensively for weed control—poses serious dangers to animals and their ecosystems. A rice field that had been treated with glyphosate for several years was the subject of this investigation into the bioremediation capabilities of soil bacteria. We provisionally identified the most promising isolate as Bacillus sp. strain Unand1 using partial identification methods. Under ideal circumstances, this bacterium demonstrated considerable promise for degrading glyphosate. Bacterial experiments showed that the optimal conditions for glyphosate degradation were a pH of 6.0–7.0, a glyphosate concentration of 0.5–0.6 g/L, 30 °C, and a 1% (v/v) inoculum size. At 0.5 g/L glyphosate, the bacterium showed a two-day lag phase before degrading over 90% after six days of incubation. There was a remarkable 99% and 95% suppression rate of bacterial growth, respectively, when exposed to heavy metals such as Hg(II) and Ag(I). According to this study, this bacterium has bioremediation capability for glyphosate-contaminated settings. Full characterisation and optimization of this bioremediation approach require additional research, especially using molecular identification techniques. This method has the potential to greatly reduce the negative effects of glyphosate pollution on ecosystems and agricultural sustainability.

References

Ying KK, Sulaiman MR. Toxicity effect of bisphenol-A in several animal studies: A mini review. Bioremediation Sci Technol Res. 2013 Dec 31;1(1):23-6.

Fardami AY, Kawo AH, Yahaya S, Lawal I, Abubakar AS, Maiyadi KA. A Review on Biosurfactant Properties, Production and Producing Microorganisms. J Biochem Microbiol Biotechnol. 2022 Jul 31;10(1):5-12.

Yakubu A, Uba G, Vyas A. Optimization of Culture Conditions for the Production of Alkaline Cellulase Enzyme Produced from Fusarium oxysporum VSTPDK. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):3-9.

Mohammed UY, Hamzah AP, Abubakar S. Consistent Organochlorinated Pesticides (OPC) Residues Contamination in Beans Consumed in Gombe Metropolis Nigeria. J Environ Bioremediation Toxicol. 2021 Dec 31;4(2):1-6.

Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, et al. Enhanced photocatalytic Degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng. 2021;9(4).

Tepanosyan G, Maghakyan N, Sahakyan L, Saghatelyan A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol Environ Saf. 2017;142:257-65.

Khandaker MU, Asaduzzaman K, Nawi SM, Usman AR, Amin YM, Daar E, et al. Assessment of radiation and heavy metals risk due to the dietary intake of marine fishes (Rastrelliger kanagurta) from the Straits of Malacca. PLoS ONE. 2015;10(6):1-16.

Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al. Human health risk of polycyclic aromatic hydrocarbons from consumption of blood cockle and exposure to contaminated sediments and water along the Klang Strait, Malaysia. Mar Pollut Bull. 2014 Jul 15;84(1):268-79.

Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74-88.

Grant WF. The present status of higher plant bioassays for the detection of environmental mutagens. Mutat Res Regul Pap. 1994;310(2):175-85.

Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, et al. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol Part - C Toxicol Pharmacol. 2021;239.

Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere. 2020 Feb;241:125017.

Nwonumara GN, Okogwu OI. Oxidative and biochemical responses as indicators of chemical stress in Clarias gariepinus (Burchell, 1822) juvenile exposed to glyphosate. Sci Afr. 2020;8.

Moraes JS, da Silva Nornberg BF, Castro MRD, Vaz BDS, Mizuschima CW, Marins LFF, et al. Zebrafish (Danio rerio) ability to activate ABCC transporters after exposure to glyphosate and its formulation Roundup Transorb®. Chemosphere. 2020;248.

Carvalho WF, Ruiz de Arcaute C, Torres L, de Melo e Silva D, Soloneski S, Larramendy ML. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Sci Pollut Res. 2020;27(6):6515-25.

Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, et al. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2019;216.

Yusof S, Ismail A, Alias MS. Effect of glyphosate-based herbicide on early life stages of Java medaka (Oryzias javanicus): a potential tropical test fish. Mar Pollut Bull. 2014 Aug 30;85(2):494-8.

Kittle RP, McDermid KJ. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J Appl Phycol. 2016 Aug 1;28(4):2597-604.

Rahman F, Ismail A, Yusof S, Mazlan N, Engku-Ahmad-Khairi EA. Evaluation of Glyphosate Levels in Sediments of Milky Stork Foraging Areas in Kuala Gula Bird Sanctuary, Perak, Malaysia. Pertanika J Trop Agric Sci. 2019 Aug 20;42:995-1007.

Mardiana-Jansar K, Ismail BS, Razak FA, Maideen HMK, Sidek HMohd, Noorani MSN, et al. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia. AIP Conf Proc. 2014 Sep 3;1614(1):795-802.

Lee LJ, Ngim J. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag Sci. 2000;56(4):336-9.

Cheah UB, Kirkwood RC, Lum KY. Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pestic Sci. 1997;50(1):53-63.

Wilson DJ, Patton S, Florova G, Hale V, Reynolds KA. The shikimic acid pathway and polyketide biosynthesis. J Ind Microbiol Biotechnol. 1998 May 1;20(5):299-303.

Amrhein N, Johänning D, Smart CC. A Glyphosate-Tolerant Plant Tissue Culture. In: Neumann KH, Barz W, Reinhard E, editors. Primary and Secondary Metabolism of Plant Cell Cultures. Berlin, Heidelberg: Springer; 1985. p. 356-61. (Proceedings in Life Sciences).

Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol. 2021;23(6):2891-905.

Schulz A, Krüper A, Amrhein N. Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol Lett. 1985 Jul 1;28(3):297-301.

Fadanka S, Minette S, Mowoh N. Preparation of Bacteria Glycerol Stocks. 2022 Aug 1 [cited 2024 Jun 6]; Available from: https://www.protocols.io/view/preparation-of-bacteria-glycerol-stocks-censtdee

Pongraveevongsa P, Khobjai W, Wunnapuk K, Sribanditmongkol P. High-performance liquid chromatography/uv detection for determination of glyphosate in serum and gastric content. Chiang Mai Med J. 2008;47(4):155-62.

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergeys Man Determinative Bacteriol. 1994;

Costin S, Ionut S. ABIS online - bacterial identification software, http://www.tgw1916.net/bacteria_logare.html, database version: Bacillus 022012-2.10, accessed on Mar 2015. 2015.

Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, et al. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res GMR. 2015 Nov 23;14(4):14717-30.

Quinn JP, Peden JMM, Dick RE. Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol. 1989;31(3):283-7.

Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, et al. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol. 2012;58(4):263-71.

Manogaran M, Yasid NA, Ahmad SA. Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. J Biochem Microbiol Biotechnol. 2017 Jul 31;5(1):21-5.

Talbot HW, Johnson LM, Munnecke DM. Glyphosate utilization byPseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol. 1984 Sep 1;10(5):255-9.

Balthazor TM, Hallas LE. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986;51(2):432-4.

Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol. 2002;68(4):2081-4.

Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE, et al. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res. 2014 Jan 20;169(1):99-105.

Liu CM, McLean PA, Sookdeo CC, Cannon FC. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol. 1991;57(6):1799-804.

Peng RH, Tian YS, Xiong AS, Zhao W, Fu XY, Han HJ, et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PloS One. 2012;7(8):e39579.

Moneke AN, Okpala GN, Anyanwu CU. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol. 2010;9(26):4067-74.

Nourouzi MM, Chuah TG, Choong TSY, Rabiei F. Modeling biodegradation and kinetics of glyphosate by artificial neural network. J Environ Sci Health B. 2012;47(5):455-65.

Adams MR, Little CL, Easter MC. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J Appl Bacteriol. 1991;71(1):65-71.

Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs. 2011;9(1):29-42.

Benslama O, Boulahrouf A. Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria. Afr J Miicrbiology Res. 2013 Dec 11;7:5587-95.

Sharifi Y, Pourbabaei AA, Javadi A, Abdolmohammad MH, Saffari M, Morovvati A. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake. Iran Env Health Eng Manag J. 2015;2(1):31-6.

Lerbs W, Stock M, Parthier B. Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch Microbiol. 1990;153(2):146-50.

Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health - Part B Pestic Food Contam Agric Wastes. 2013;48(3):208-13.

Somara S, Siddavattam D. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int. 1995;36(3):627-31.

Krzy?ko-?upicka T, Orlik A. Use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere. 1997;34(12):2601-5.

Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY. Characterisation of the simultaneous molybdenum reduction and glyphosate degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. 3 Biotech. 2018 Feb 7;8(2):117.

Manogaran M, Shukor MY, Yasid NA, Johari WLW, Ahmad SA. Isolation and characterisation of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei. 2017;28(3):471-9.

Penaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol. 1995;61(2):538-43.

Aliyu FI, Ibrahim A, Babandi A, Shehu D, Ya'u M, Babagana K, et al. Glyphosate Biodegradation by Molybdenum-Reducing Pseudomonas sp. J Environ Microbiol Toxicol. 2022 Dec 31;10(2):42-7.

Mohy-Ud-Din W, Akhtar MJ, Bashir S, Asghar HN, Nawaz MF, Chen F. Isolation of Glyphosate-Resistant Bacterial Strains to Improve the Growth of Maize and Degrade Glyphosate under Axenic Condition. Agriculture. 2023 Apr;13(4):886.

Moore JK, Braymer HD, Larson AD. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol. 1983;46(2):316-20.

Dick RE, Quinn JP. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett. 1995;134(2-3):177-82.

Dick RE, Quinn JP. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of Degradation. Appl Microbiol Biotechnol. 1995 Jul;43(3):545-50.

Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor MS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and glyphosate-degrading Klebsiella oxytoca strain Saw-5 in soils from Sarawak. Agrivita. 2016;38(1):1-13.

Hernández Guijarro K, De Gerónimo E, Erijman L. Glyphosate biodegradation potential in soil based on glycine oxidase gene (thio) from Bradyrhizobium. Curr Microbiol. 2021 May;78(5):1991-2000.

Stoyanova K, Gerginova M, Peneva N, Dincheva I, Alexieva Z. Biodegradation and Utilization of the Pesticides Glyphosate and Carbofuran by Two Yeast Strains. Processes. 2023 Nov 30;11(12):3343.

Omorinola AA, Ogunbiyi OJ, Jegede RJ, Adeleke MA, Fakolade BA. Biodegradation of glyphosate containing herbicide by soil fungi. Innovare J Life Sci. 2023 Sep 26;36-40.

Han H, Zhang H, Qin S, Zhang J, Yao L, Chen Z, et al. Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. Chemosphere. 2021 Aug;276:130157.

Zhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol. 2018 Jun;102(12):5033-43.

Tang FHM, Jeffries TC, Vervoort RW, Conoley C, Coleman NV, Maggi F. Microcosm experiments and kinetic modeling of glyphosate biodegradation in soils and sediments. Sci Total Environ. 2019 Mar;658:105-15.

Wilms W, Parus A, Homa J, Batycka M, Niemczak M, Wo?niak-Karczewska M, et al. Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation. Chemosphere. 2023 Mar;316:137717.

Hernández Guijarro K, De Gerónimo E, Erijman L. Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium. Curr Microbiol. 2021 May;78(5):1991-2000.

Martins GL, De Souza AJ, Osti JF, Gontijo JB, Cherubin MR, Viana DG, et al. The Role of Land Use, Management, and Microbial Diversity Depletion on Glyphosate Biodegradation in Tropical Soils. 2023 [cited 2024 Jun 4]; Available from: https://www.ssrn.com/abstract=4385942

Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol. 2022 Jun;38(6):98.

Downloads

Published

31.07.2023

How to Cite

Rusnam, ., Rahman, M. F., Khayat, M. E., Nasution, F. I. ., Umar, A., & Yakasai, H. M. . (2023). Characterisation of a Bacillus sp. Isolated from Soils Near Lake Maninjau Capable of Degrading Glyphosate. Journal of Environmental Microbiology and Toxicology, 11(1), 69–76. https://doi.org/10.54987/jemat.v11i1.886

Issue

Section

Articles