Biosorption of Azo Dyes by Bacterial Biomass: A review

Authors

  • Abdusssamad Abubakar National Environmental Standards and Regulations Enforcement Agency P. M. B. 641, Wuse Zone 7, NESREA, Abuja, FCT, Nigeria.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Ahmad Razi Othman Department of Chemical Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v11i1.844

Keywords:

Adsorption, Bacteria, Biomass, Azo dyes, Biosorption

Abstract

This review explores the potential of bacterial biomass as a sustainable and cost-effective approach for removing azo dyes from wastewater. Azo dyes, widely used in various industries, pose significant environmental challenges due to their persistence and potential toxic effects. The study provides an extensive analysis of the current literature on the biosorption of dye using bacterial biomass. It discusses the mechanisms involved in biosorption, including physicochemical interactions, microbial metabolism, and cell surface characteristics. The review presents an overview of different bacterial species, their suitability for biosorption, and the factors that influence their efficiency. The review critically evaluates various parameters affecting biosorption performance, such as pH, temperature, initial dye concentration, and biomass dosage. It highlights the importance of optimizing these parameters to enhance biosorption efficacy and maximize dye removal efficiency. The advantages and limitations of using bacterial biomass for azo dye biosorption and comparing it with other conventional treatment methods were discussed. The potential application of biosorption in large-scale scenarios and the challenges associated with its implementation are also addressed. The review emphasizes the need for further studies to explore novel bacterial strains, improve biosorption kinetics, optimize process parameters, and investigate the fate of dye-loaded biomass.

References

Islam M, Mostafa M. Textile Dyeing Effluents and Environment Concerns - A Review. Journal of Environmental Science and Natural Resources. 2019;11(1-2):131-44.

Aragaw TA, Bogale FM. Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Front En-viron Sci. 2021;9(December).

Karim ME, Dhar K, Hossain MT. Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened from Textile Dyeing Effluent. Journal of Genetic Engineering and Biotechnology [Internet]. 2018;16(2):375-80. Available from: https://doi.org/10.1016/j.jgeb.2018.02.005

Ramalingam P, Devi SV. Biodegradation and Decolourization of AZO Dyes Using Marine Bacteria. International Journal of Bio-Technology and Research (IJBTR) [Internet]. 2017;7(2):1-12. Available from: https://www.researchgate.net/profile/Vimala_Devi2/publication/320517859_Biodegradation_and_Decolourization_of_AZO_Dyes_Using_Marine_Bacteria/links/59e9a12daca272bc42b6b0aa/Biodegradation-and-Decolourization-of-AZO-Dyes-Using-Marine-Bacteria.pdf%0Ahttp://w

Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol. 2006;44(8):618-26.

?enol ZM. Effective biosorption of Allura red dye from aqueous solutions by the dried-lichen (Pseudoevernia furfu-racea) biomass. Int J Environ Anal Chem [Internet]. 2022;102(16):4550-64. Available from: https://doi.org/10.1080/03067319.2020.1785439

El-Idreesy TT, Khoshala O, Firouzi A, Elazab HA. Equilibrium and kinetic study on the biosorption of trypan blue from aqueous solutions using avocado seed powder. Biointerface Res Appl Chem. 2021;11(3):11042-53.

Walker GM, Weatherley LR. Biodegradation and biosorption of acid anthraquinone dye. Environmental Pollution. 2000;108(2):219-23.

Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26(3):266-91.

Wang Y, Jiang L, Shang H, Li Q, Zhou W. Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica. Environ Technol Innov [Internet]. 2020;19:100810. Available from: https://doi.org/10.1016/j.eti.2020.100810

Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Lee Hu T. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 2001;35(12):2841-50.

Lade H, Kadam A, Paul D, Govindwar S. A low-cost wheat bran medium for biodegradation of the benzidine-based carcinogenic dye trypan blue using a microbial consortium. Int J Environ Res Public Health. 2015;12(4):3480-505.

Abdi O, Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science. 2015;6(5):1386-99.

Crini G, Lichtfouse E, Wilson LD, Morin-Crini N. Green Adsorbents for Pollutant Removal [Internet]. 1 ed. France: Pringer; 2018. 23-71 p. Available from: https://books.google.pt/books?id=BVhiDwAAQBAJ&dq=model+Spahn+%26+Schlunder+sorption&hl=pt-PT&source=gbs_navlinks_s

Imran Din M, Mirza ML, Ata S, Athar M, Mohsin IU. Thermodynamics of biosorption for removal of Co(II) ions by an efficient and ecofriendly biosorbent (saccharum bengalense): Kinetics and isotherm modeling. J Chem. 2013;2013.

Karthik V, Saravanan K, Sivarajasekar N, Suriyanarayanan N. Article-72 Bioremediation of dye bearing effluents using microbial biomass. Copyright@ EM International. 2016;22:22.

Won SW, Han MH, Yun YS. Different binding mechanisms in biosorption of reactive dyes according to their reactiv-ity. Water Res [Internet]. 2008;42(19):4847-55. Available from: http://dx.doi.org/10.1016/j.watres.2008.09.003

Tacas ACJ, Tsai PW, Tayo LL, Hsueh CC, Sun SY, Chen BY. Degradation and biotoxicity of azo dyes using indige-nous bacteria-acclimated microbial fuel cells (MFCs). Process Biochemistry [Internet]. 2021;102(November 2020):59-71. Available from: https://doi.org/10.1016/j.procbio.2020.12.003

Kumar P, Bhati H, Rani A, Singh R. Role of Biosorption of Dyes and Microorganisms in Environment. Life Sci. 2015;4(2):38-41.

Roy U, Manna S, Sengupta S, Das P, Datta S, Mukhopadhyay A, et al. Dye Removal Using Microbial Biosorbents. In: Green Adsorbents for Pollutant Removal, Environmental Chemistry for a Sustainable World 19. 2018. p. 253-80.

Busi S, Chatterjee R, Rajkumari J, Hnamte S. Ecofriendly Biosorption of dyes and metals by bacterial biomass of Aeromonas hydrophila RC1. J Environ Biol. 2016;37(2):267-74.

Hussain S, Maqbool Z, Ali S, Yasmeen T, Imran M, Mahmood F, et al. Biodecolorization of reactive black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan. Eco-toxicol Environ Saf [Internet]. 2013;98:331-8. Available from: http://dx.doi.org/10.1016/j.ecoenv.2013.09.018

Jobby R, Jha P, Kudale S, Kale A, Desai N. Biodegradation of textile dye Direct Blue 71 using root nodulating Rhi-zobium sp . Indian J Exp Biol. 2019;57(July):532-9.

Benkhaya S, M' rabet S, El Harfi A. A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun. 2020;115(March).

Hassaan MA, Nemr A El. Advanced Oxidation Processes (AOPs) for Wastewater Treatment Advanced Oxidation Processes of Some Organic Pollutants in Fresh and Sea Water. American Journal of Environmental Science and En-gineering [Internet]. 2017;1(3):64-7. Available from: http://www.sciencepublishinggroup.com/j/ajese

Mohan S, Muralimohan N, Vidhya K, Sivakumar CT. a Case Study on-Textile Industrial Process, Characterization and Impacts of Textile Effluent. Indian JSciRes [Internet]. 2017;17(1):80-084. Available from: http://www.ijsr.in/upload/1543220590Chapter_1.pdf

Skowronek M, Roterman I, Konieczny L, Stopa B, Rybarska J, Piekarska B, et al. The conformational characteristics of Congo red, Evans blue and Trypan blue. Comput Chem. 2000;24(3-4):429-50.

Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface Sci. 2014;209:172-84.

Chung KT, Cerniglia CE. Mutagenicity of azo dyes: Structure-activity relationships. Mutation Research/Reviews in Genetic Toxicology. 1992;277(3):201-20.

Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 2019;3(2):275-90.

Wild CP. Abstract SY14-01: Preventable exposures associated with human cancer. Cancer Res. 2013;73(8 Supple-ment).

Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol. 2016;36(4):639-51.

Fibre2Fashion. Pollution by Textile Industry - Pollutants of Water, Air, Land, Environmental Pollution By Textile Industry [Internet]. Web page. 2012 [cited 2021 Feb 20]. Available from: https://www.fibre2fashion.com/industry-article/6262/various-pollutants-released-into-environment-by-textile-industry

Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M. Asiri A, et al. Pollution, Toxicity and Carcinogenicity of Or-ganic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des. 2019;25(34):3645-63.

Gadd GM. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology. 2009;84(1):13-28.

Malik A, Grohmann E. Environmental protection strategies for sustainable development. Environmental Protection Strategies for Sustainable Development. Braga, Portugal: Springer Science & Business Media; 2012. 1-605 p.

Sharma S, Saxena R, Gaur G. Study of Removal Techniques for Azo Dyes by Biosorption: A Review. IOSR Journal of Applied Chemistry. 2014;7(10):06-21.

Baldikova E, Safarikova M, Safarik I. Organic dyes removal using magnetically modified rye straw. J Magn Magn Mater [Internet]. 2015;380:181-5. Available from: http://dx.doi.org/10.1016/j.jmmm.2014.09.003

Islam MM, Mahmud K, Faruk O, Billah S. Assessment of environmetal impacts for textile dyeing industries in Bang-ladesh. Proceedings of the International Conference on Green Technology and Environmental Conservation, GTEC-2011. 2011;2(6):173-81.

Hamzeh Y, Ashori A, Azadeh E, Abdulkhani A. Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Materials Science and Engineering C [Internet]. 2012;32(6):1394-400. Available from: http://dx.doi.org/10.1016/j.msec.2012.04.015

Kiran I, Akar T, Ozcan AS, Ozcan A, Tunali S. Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem Eng J. 2006;31(3):197-203.

Mokhtar N, Aziz EA, Aris A, Ishak WFW, Mohd Ali NS. Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. J Environ Chem Eng. 2017;5(6):5721-31.

Roy U, Sengupta S, Banerjee P, Das P, Bhowal A, Datta S. Assessment on the decolourization of textile dye (Reac-tive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation. J Environ Manage. 2018;223(February):185-95.

Hastuti B, Nur Afifah S, Mulyani B, Susilowati E. Adsorption of Methylene Blue Dyes Using Pectin Membrane. J Phys Conf Ser. 2020;1503(1).

Khamparia S, Jaspal DK. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front Environ Sci Eng. 2017;11(1):1-18.

Naik MM, Dubey SK. Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf [Internet]. 2013 Dec [cited 2016 Jan 28];98:1-7. Available from: http://dx.doi.org/10.1016/j.ecoenv.2013.09.039

Karakagh RM, Chorom M, Motamedi H, Kalkhajeh YK, Oustan S. Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrology & Hydrobiology [Internet]. 2012;12(3):191-8. Available from: http://dx.doi.org/10.1016/S1642-3593(12)70203-3

Gopalakrishnan Y, Al-Gheethi A, Malek MA, Azlan MM, Al-Sahari M, Radin Mohamed RMS, et al. Removal of basic brown 16 from aqueous solution using durian shell adsorbent, optimisation and techno-economic analysis. Sus-tainability (Switzerland). 2020;12(21):1-22.

Sujitha R, Ravindhranath K. Removal of Coomassie brilliant blue dye from waste waters using active carbon derived from barks of Ficus racemosa plant. Pharm Lett. 2016;8(10):72-83.

Fomina M, Gadd GM. Biosorption: Current perspectives on concept, definition and application. Bioresour Technol. 2014;160:3-14.

Kotrba P, Mackova M, Macek T. Microbial biosorption of metals. Microbial Biosorption of Metals. 2011;(January):1-329.

Kargi F, Ozmihci S. Biosorption performance of powdered activated sludge for removal of different dyestuffs. En-zyme Microb Technol. 2004;35(2-3):267-71.

Cai Z, Deng X, Wang Q, Lai J, Xie H, Chen Y, et al. Core-shell granular activated carbon and its adsorption of trypan blue. J Clean Prod [Internet]. 2020;242:118496. Available from: https://doi.org/10.1016/j.jclepro.2019.118496

Du LN, Wang B, Li G, Wang S, Crowley DE, Zhao YH. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms. J Hazard Mater. 2012;205-206:47-54.

McKay G, Ho YS, Ng JCY. Biosorption of copper from waste waters: A review. Separation and Purification Meth-ods. 1999;28(1):87-125.

Jayanth N, Karthik R, Logesh S, K SR, Vijayanand K. Environmental issues and its impacts associated with the textile processing units in. 2nd International Conference on Environmental Science and Development, IPCBEE. 2011;4(17):120-4.

Asgher M. Biosorption of reactive dyes: A review. Water Air Soil Pollut. 2012;223(5):2417-35.

Venkata Mohan S, Chandrasekhar Rao N, Karthikeyan J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study. J Hazard Mater. 2002;90(2):189-204.

Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpää M. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere. 2018;204:413-30.

Tran HN, You SJ, Chao HP. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J Environ Chem Eng. 2016;4(3):2671-82.

Cid H, Ortiz C, Pizarro J, Barros D, Castillo X, Giraldo L, et al. Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption. 2015;21(8):645-58.

Kim S, Song MH, Wei W, Yun YS. Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J Hazard Mater [Internet]. 2015;283:657-62. Available from: http://dx.doi.org/10.1016/j.jhazmat.2014.10.008

Fawzy M, Nasr M, Abdel-Rahman AM, Hosny G, Odhafa BR. Techno-economic and environmental approaches of Cd2+ adsorption by olive leaves (Olea europaea L.) waste. Int J Phytoremediation [Internet]. 2019;21(12):1205-14. Available from: https://doi.org/10.1080/15226514.2019.1612848

O'Mahony T, Guibal E, Tobin JM. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb Tech-nol. 2002;31(4):456-63.

Liu C, Yuan H, Yang J, Li B. Effective biosorption of reactive blue 5 by pH-independent lyophilized biomass of Ba-cillus megaterium. Afr J Biotechnol. 2011;10(73):16626-36.

Ofomaja AE, Ho YS. Effect of pH on cadmium biosorption by coconut copra meal. J Hazard Mater. 2007;139(2):356-62.

Wang BE, Hu YY, Xie L, Peng K. Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fu-migatus beads. Bioresour Technol. 2008;99(4):794-800.

Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, et al. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B Biointerfaces [Internet]. 2013;107:11-8. Available from: http://dx.doi.org/10.1016/j.colsurfb.2013.01.062

Iddou A, Hadj Youcef M, Aziz A, Ouali MS. Biosorptive removal of lead (II) ions from aqueous solutions using Cystoseira stricta biomass: Study of the surface modification effect. Journal of Saudi Chemical Society [Internet]. 2011;15(1):83-8. Available from: http://dx.doi.org/10.1016/j.jscs.2010.10.007

Buthelezi SP, Olaniran AO, Pillay B. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules. 2012;17(12):14260-74.

Abdullah MI, Öztürk A, Bayol E. Biosorption of astrazon red dye by the bacterium Rhodopseudomonas sp. strain 51ATA. Environ Earth Sci [Internet]. 2021;80(2):1-8. Available from: https://doi.org/10.1007/s12665-020-09314-7

Rizzi V, Longo A, Fini P, Semeraro P, Cosma P, Franco E, et al. Applicative Study (Part I): The Excellent Conditions to Remove in Batch Direct Textile Dyes (Direct Red, Direct Blue and Direct Yellow) from Aqueous Solutions by Ad-sorption Processes on Low-Cost Chitosan Films under Different Conditions. Advances in Chemical Engineering and Science. 2014;04(04):454-69.

Das SK, Shome I, Guha AK. Biotechnological Potential of Soil Isolate, Flavobacterium mizutaii for Removal of Azo Dyes: Kinetics, Isotherm, and Microscopic Study. Separation Science and Technology (Philadelphia). 2012;47(13):1913-25.

Park D, Yun YS, Park JM. The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engi-neering. 2010;15(1):86-102.

Sheshdeh RK, Nikou MRK, Badii K, Limaee NY, Golkarnarenji G. Equilibrium and kinetics studies for the adsorp-tion of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. J Taiwan Inst Chem Eng [Internet]. 2014;45(4):1792-802. Available from: http://dx.doi.org/10.1016/j.jtice.2014.02.020

Shroff KA, Vaidya VK. Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal [Internet]. 2011;171(3):1234-45. Available from: http://dx.doi.org/10.1016/j.cej.2011.05.034

Cherfi Abdelhamid AM. Kinetic and Equilibrium Studies of Coomassie Blue G-250 Adsorption on Apricot Stone Activated Carbon. J Environ Anal Toxicol. 2014;05(02).

Shukor MY. Arrhenius Plot Analysis of the Temperature Effect on the Biodegradation Rate of 2-chloro-4-nitrophenol. Biogenesis: Jurnal Ilmiah Biologi. 2020;8(2):219.

Velkova ZY, Kirova GK, Stoytcheva MS, Gochev VK. Biosorption of Congo Red and methylene blue by pretreated waste streptomyces fradiae biomass - Equilibrium, kinetic and thermodynamic studies. Journal of the Serbian Chemi-cal Society. 2018;83(1):107-20.

Mona S, Kaushik A, Kaushik CP. Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecol Eng [Inter-net]. 2011;37(10):1589-94. Available from: http://dx.doi.org/10.1016/j.ecoleng.2011.04.005

Jadhav SB, Yedurkar SM, Phugare SS, Jadhav JP. Biodegradation Studies on Acid Violet 19, a Triphenylmethane Dye, by Pseudomonas aeruginosa BCH. Clean (Weinh). 2012;40(5):551-8.

Zhang J, Zhou Q, Ou L. Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aque-ous solution by chitosan/alumina composite. J Chem Eng Data. 2012;57(2):412-9.

Canizo B V., Agostini E, Wevar Oller AL, Dotto GL, Vega IA, Escudero LB. Removal of Crystal Violet from Natu-ral Water and Effluents Through Biosorption on Bacterial Biomass Isolated from Rhizospheric Soil. Water Air Soil Pollut. 2019;230(8).

Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science (Oxford). 2008;33(4):399-447.

Cheng Z, Feng K, Su Y, Ye J, Chen D, Zhang S, et al. Novel biosorbents synthesized from fungal and bacterial bio-mass and their applications in the adsorption of volatile organic compounds. Bioresour Technol. 2020;300(December 2019).

Öztürk A, Bayol E, Abdullah MI. Characterization of the biosorption of fast black azo dye K salt by the bacterium Rhodopseudomonas palustris 51ATA strain. Electronic Journal of Biotechnology. 2020;46:22-9.

Abubakar A, Manogaran M, Yasid NA, Othman AR, Shukor MYA. Equilibrium, kinetic and thermodynamic studies of the adsorption of trypan blue dye by Pseudomonas sp. strain MM02 inactivated biomass. Korean Journal of Chem-ical Engineering. 2023;40(8):1928-53.

Horciu IL, Blaga AC, Rusu L, Zaharia C, Suteu D. Biosorption of reactive dyes from aqueous media using the bacil-lus sp. Residual biomass. Desalination Water Treat. 2020;195:353-60.

Diaz-Uribe C, Angulo B, Patiño K, Hernández V, Vallejo W, Gallego-Cartagena E, et al. Cyanobacterial biomass as a potential biosorbent for the removal of recalcitrant dyes from water. Water (Switzerland). 2021;13(22):1-14.

Vijayaraghavan K, Yun YS. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reac-tive Black 5 from aqueous solution. J Hazard Mater. 2007;141(1):45-52.

Nguyen TA, Fu CC, Juang RS. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J Environ Manage [Internet]. 2016;182:265-71. Available from: http://dx.doi.org/10.1016/j.jenvman.2016.07.083

Nath J, Ray L. Biosorption of Malachite green from aqueous solution by dry cells of Bacillus cereus M116 (MTCC 5521). J Environ Chem Eng [Internet]. 2015;3(1):386-94. Available from: http://dx.doi.org/10.1016/j.jece.2014.12.022

Reddy S, Osborne JW. Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. Water Environment Research. 2020;92(8):1230-41.

Sarim KM, Kukreja K, Shah I, Choudhary CK. Biosorption of direct textile dye Congo red by Bacillus subtilis HAU-KK01. Bioremediat J [Internet]. 2019;23(3):185-95. Available from: https://doi.org/10.1080/10889868.2019.1641466

Çolak F, Atar N, Olgun A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. Chemical Engineering Journal. 2009;150(1):122-30.

Chen Z, Chen H, Pan X, Lin Z, Guan X. Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water Air Soil Pollut. 2015;226(5).

Kassale A, Barouni K, Bazzaoui M, Albourine A. Journal of Chemical , Biological and Physical Sciences Kinetics and Modeling of the adsorption of methylene blue by the grafted cotton . J Chem Biol Phys Sci. 2015;5(2).

Tan KL, Hameed BH. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solu-tions. J Taiwan Inst Chem Eng [Internet]. 2017;74:25-48. Available from: http://dx.doi.org/10.1016/j.jtice.2017.01.024

Eris S, Azizian S. Analysis of adsorption kinetics at solid/solution interface using a hyperbolic tangent model. J Mol Liq [Internet]. 2017;231:523-7. Available from: http://dx.doi.org/10.1016/j.molliq.2017.02.052

Monte Blanco SPD, Scheufele FB, Módenes AN, Espinoza-Quiñones FR, Marin P, Kroumov AD, et al. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal [Internet]. 2017;307:466-75. Available from: http://dx.doi.org/10.1016/j.cej.2016.08.104

Yu L, Li WW, Lam MHW, Yu HQ. Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Appl Microbiol Biotechnol. 2011;90(3):1119-27.

Ibrahim S, Muhammad A, Tanko AS, Abubakar A, Ibrahim H, Shukor MY, et al. Studies of action of heavy metals on caffeine degradation by immobilised Leifsonia sp. strain SIU. Bayero Journal of Pure and Applied Sciences. 2016;8(2):138.

Abdussamad Abubakar, Nazeef Idris Usman, Hadiza Ibrahim, Abdullahi Muhammad, Usman Sunusi, Ferdaus Mo-hamat-yusuff, et al. Growth Kinetics Modelling of Tributytin-Resistant Klebsiella SP. FIRD 2 In Cadmium Media. UMYU Journal of Microbiology Research (UJMR). 2017;2(1):157-65.

Basha S, Murthy ZVP, Jha B. Kinetics, isotherms, and thermodynamics of HG(II) biosorption onto Carica papaya. Bioremediat J. 2011;15(1):26-34.

Das A, Mishra S. Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study. J Environ Chem Eng. 2017;5(1):612-27.

Roginsky S. An equation for the kinetics of activated adsorption. Nature [Internet]. 1934 [cited 2023 Dec 14];134(3398):935. Available from: https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/zeldovich-yakov-borisovich

Ridha FN, Yang Y, Webley PA. Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y. Microporous and Mesoporous Materials. 2009 Jan 1;117(1-2):497-507.

Armbruster MH, Austin JB. The Adsorption of Gases on Plane Surfaces of Mica. J Am Chem Soc [Internet]. 1938 Sep 1 [cited 2023 Dec 14];60(2):467-75. Available from: https://pubs.acs.org/doi/abs/10.1021/ja02242a004

DUBININ MM. Physical Adsorption of Gases and Vapors in Micropores. 1975 Jan 1;9:1-70.

Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16(5):490-5.

Toth LE. Metal Carn?des and N?tr?des. In: Transition Metal Carbides and Nitrides, Academic Press, New York,. 1971.

Ho YS, Porter JF, McKay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut [Internet]. 2002 [cited 2023 Dec 14];141(1-4):1-33. Available from: https://link.springer.com/article/10.1023/A:1021304828010

Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activat-ed carbon. Chem Eng Sci. 1974;29(5):1279-82.

Wang J, Wan W. Kinetic models for fermentative hydrogen production: A review. Vol. 34, International Journal of Hydrogen Energy. 2009. p. 3313-23.

Uba G, Yakasai HM, Abubakar A. Mathematical Modeling of The Biodegradation of Phenol from Industrial Efflu-ents Using Immobilized Pseudomonas putida. Journal of Biochemistry, Microbiology and Biotechnology [Internet]. 2020 Jul 31 [cited 2022 Aug 15];8(1):15-8. Available from: https://journal.hibiscuspublisher.com/index.php/JOBIMB/article/view/503

Chen T, Da T, Ma Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J Mol Liq [Internet]. 2021;322(2):114980. Available from: https://doi.org/10.1016/j.molliq.2020.114980

Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z. Biosorption and biodegradation of Acid Orange 7 by Entero-coccus faecalis strain ZL: Optimization by response surface methodological approach. Environmental Science and Pol-lution Research. 2013;20(7):5056-66.

Allen SJ, Gan Q, Matthews R, Johnson PA. Mass transfer processes in the adsorption of basic dyes by peanut hulls. Ind Eng Chem Res [Internet]. 2005 Mar 16 [cited 2022 Mar 15];44(6):1942-9. Available from: https://pure.qub.ac.uk/en/publications/mass-transfer-processes-in-the-adsorption-of-basic-dyes-by-peanut

Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater [Internet]. 2009 Mar 15 [cited 2022 Mar 15];162(2-3):616-45. Available from: https://pubmed.ncbi.nlm.nih.gov/18656309/

Namasivayam C, Sangeetha D. Application of coconut coir pith for the removal of sulfate and other anions from wa-ter. Desalination. 2008 Jan 25;219(1-3):1-13.

Plazinski W, Rudzinski W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mecha-nism: A review. Adv Colloid Interface Sci [Internet]. 2009 Nov 30 [cited 2022 Mar 15];152(1-2):2-13. Available from: https://pubmed.ncbi.nlm.nih.gov/19735907/

Abubakar A, Sabo IA, Yahuza S. Thermodynamics Modelling of Lead (II) Biosorption using Cystoseira stricta Bio-mass. Bioremediation Science and Technology Research [Internet]. 2020 Dec 31 [cited 2022 Aug 15];8(2):21-3. Available from: https://journal.hibiscuspublisher.com/index.php/BSTR/article/view/554

Kuipa PK, Kuipa O. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation. J Chem. 2015;2015.

Ghatbandhe AS, Jahagirdar HG, Yenkie MKN, Deosarkar SD. Evaluation of thermodynamic parameters of 2, 4-dichlorophenoxyacetic acid (2, 4-D) adsorption. J Chem. 2013;2013.

Gao J, Ye J, Ma J, Tang L, Huang J. Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophil-ia and their influence on cellular metabolism. J Hazard Mater [Internet]. 2014 Jul 15 [cited 2014 Sep 18];276:112-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24866561

Patowary K, Patowary R, Kalita MC, Deka S. Development of an efficient bacterial consortium for the potential reme-diation of hydrocarbons from contaminated sites. Front Microbiol [Internet]. 2016 [cited 2020 Apr 5];7(JUL):1092. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27471499

Ayanda OS, Fatoki OS, Adekola FA, Ximba BJ. Activated carbon-fly ash-nanometal oxide composite materials: Preparation, characterization, and tributyltin removal efficiency. J Chem. 2013;2013.

Dash SS, Gummadi SN. Biodegradation of caffeine by Pseudomonas sp. NCIM 5235. Res J Microbiol. 2010;5(8):745-53.

Dodiya K, Agravat S, Oza AT. FTIR Spectra of Ni H-dmg2 Hydrogen Bonded With Six Dyes. International Journal of Trend in Scientific Research and Development. 2017;Volume-1(Issue-2).

Gupta J, Rathour R, Medhi K, Tyagi B, Thakur IS. Microbial-derived natural bioproducts for a sustainable environ-ment: A bioprospective for waste to wealth [Internet]. Refining Biomass Residues for Sustainable Energy and Bi-oproducts: Technology, Advances, Life Cycle Assessment, and Economics. Elsevier Inc.; 2019. 51-85 p. Available from: http://dx.doi.org/10.1016/B978-0-12-818996-2.00003-X

Downloads

Published

30.06.2023

How to Cite

Abubakar, A. ., Yasid, N. A., Othman, A. R., & Shukor, M. Y. (2023). Biosorption of Azo Dyes by Bacterial Biomass: A review. Journal of Environmental Microbiology and Toxicology, 11(1), 38–51. https://doi.org/10.54987/jemat.v11i1.844

Issue

Section

Articles