Characterization of Sodium Dodecyl Sulphate–degrading Enterobacter cloacae sp. STRAIN AaMa
DOI:
https://doi.org/10.54987/jemat.v11i1.840Keywords:
Sodium Dodecyl Sulfate, Biodegradation, SDS-degrading bacterium, Enterobacter cloacae, AlkylsulfataseAbstract
Surfactants are substances that can reduce its surface tension during dissolved in water or liquid and produce foam or solid. Bacterial-degrading SDS can be used for the bioremediation of this toxic substance in aquatic bodies or in soil. In this study, the isolation, identification and characterization of a local SDS-degrading bacterium is reported. Samples were isolated from a local location that had a history in surfactant contamination. Screening results shows that the best SDS-degrader was identified as Enterobacter cloacae sp. strain AaMa. The optimum conditions for the Enterobacter cloacae sp. strain AaMa to degrade the SDS were at pH 7.5, temperature 30 °C and the best nitrogen source to degrade the SDS was sodium nitrate. The Km (app) and Vmax (app) of SDS-degrading enzyme were 0.1035 mM and 0.4851 µmol SDS per minute per mg protein, respectively.
References
Scialla S. The formulation of liquid household cleaners. Handb Deterg Part Formul. 2006;153-78.
Wisniewski K. Speciality liquid household surface cleaners. Liq Deterg Surfactant Sci Ser. 2006;129:555-636.
Types and Typical Ingredients of Detergents [Internet]. Handbook Of Detergents, Part C. CRC Press; 2016 [cited 2023 Jan 28]. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781420030334-5/types-typical-ingredients-detergents-hermann-hauthal
Junfeng Y, Haowen C, Baoling W, Yongqi L. The anion detergent pollution of Antarctic Maxwell Bay and its adjacent sea areas. China Environ Sci. 1998;18(2):151-3.
Ambily PS, Jisha MS. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. J Environ Biol. 2012;33(4):717-20.
Fellah M, Hezil N, Guerfi K, Djellabi R, Montagne A, Iost A, et al. Mechanistic pathways of cationic and anionic surfactants sorption by kaolinite in water. Environ Sci Pollut Res. 2021 Feb 1;28(6):7307-21.
Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J. Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere. 2005;58(9):1249-53.
Johnson P, Trybala A, Starov V, Pinfield VJ. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci. 2021 Feb 1;288:102340.
Syed M, Mahamood M, Shukor M, Shamaan NA, others. Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1. Aust J Basic Appl Sci. 2010;4(10):5000-11.
Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13. Nova Biotechnol Chim. 2016 Dec 1;15(2):166-81.
Othman AR, Yusof MT, Shukor MY. Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):9-14.
Chaturvedi V, Kumar A. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran J Microbiol. 2011;3(1):47-53.
Arora J, Ranjan A, Chauhan A, Rajput VD, Sushkova S, Prazdnova EV, et al. A Novel Study on Anionic Surfactant Degradation Potential of Psychrophillic and Psychrotolerant Pseudomonas spp. Identified from Surfactant-contaminated River Water. Appl Biochem Biotechnol [Internet]. 2023 Jul 19 [cited 2023 Aug 16]; Available from: https://doi.org/10.1007/s12010-023-04647-y
Vaishali S, S. S, Keshav S, Sasmita S. Endophytic Bacteria Isolated from Indian Spices: An Efficient Bioremediation Agent for the Degradation of Sodium Dodecyl Sulphate. Proc Natl Acad Sci India Sect B Biol Sci. 2023 Mar 1;93(1):195-203.
Rusnam, Syafrawati S, Rahman MF, Nasution FI, Othman AR. SDS-degrading Bacterium Isolated from a Paddy Field. Asian J Plant Biol. 2022 Dec 31;4(2):38-44.
Zubkov IN, Nepomnyshchiy AP, Kondratyev VD, Sorokoumov PN, Sivak KV, Ramsay ES, et al. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J Microbiol. 2021 Dec 1;59(12):1104-11.
Karamba KI, Yakasai HM. Growth Characterization of Bacillus amyloliquefaciens strain KIK-12 on SDS. J Biochem Microbiol Biotechnol. 2019 Jul 31;7(1):26-30.
Furmanczyk EM, Lipinski L, Dziembowski A, Sobczak A. Genomic and Functional Characterization of Environmental Strains of SDS-Degrading Pseudomonas spp., Providing a Source of New Sulfatases. Front Microbiol. 2018;9:1795.
Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ Sci Pollut Res. 2014;21(12):7413-24.
Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA. Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol. 2009;30(1):129-34.
Dhouib A, Hamad N, Hassaïri I, Sayadi S. Degradation of anionic surfactants by Citrobacter braakii. Process Biochem. 2003;38(8):1245-50.
Marchesi JR a c, White GF a, Russell NJ a d, House WA b. Effect of river sediment on the biodegradation kinetics of surfactant and non-surfactant compounds. FEMS Microbiol Ecol. 1997;23(1):55-63.
Thomas ORT, White GF. Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas s. C12B. Biotechnol Appl Biochem. 1989;11(3):318-27.
Jurado E, Fernández-Serrano M, Núñez-Olea J, Luzón G, Lechuga M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere. 2006;65(2):278-85.
Gomaa A. Biodegradation of anionic surfactants (sds) by bacteria isolated from waste water in Taif governate. Annu Res Rev Biol. 2018 May 4;26(4):1-13.
Amund OO, Ilori MO, Odetundun FR. Degradation of Commercial Detergent Products by Microbial Populations of the Lagos Lagoon. Folia Microbiol (Praha). 1997;42(4):353-6.
Roig MG, Pedraz MA, Sanchez JM, Huska J, Tóth D. Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. J Mol Catal - B Enzym. 1998;4(5-6):271-81.
Singh KL, Kumar A, Kumar A. Short communication: Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J Microbiol Biotechnol. 1998;14(5):777-9.
Abboud MM, Khleifat KM, Batarseh M, Tarawneh KA, Al-Mustafa A, Al-Madadhah M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol. 2007;41(4):432-9.
Fritsche W, Hofrichter M. Aerobic Degradation by Microorganisms. In: Rehm HJ, Reed G, editors. Biotechnology Set [Internet]. Wiley-VCH Verlag GmbH; 2001 [cited 2014 Jun 29]. p. 144-67. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9783527620999.ch6m/summary
Cserháti T, Forgács E, Oros G. Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28(5):337-48.
George AL. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: Comparison of a polluted and pristine site. Mar Environ Res. 2002;53(4):403-15.
Kumar M, Trivedi SP, Misra A, Sharma S. Histopathological changes in testis of the freshwater fish, Heteropneustes fossilis (Bloch) exposed to linear alkyl benzene sulphonate (LAS). J Environ Biol. 2007;28(3):679-84.
Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad. 2011;65(7):961-71.
Chaturvedi V, Kumar A. Presence of SDS-degrading enzyme, alkyl sulfatase (SdsA1) is specific to different strains of Pseudomonas aeruginosa. Process Biochem. 2013;48(4):688-93.
Chaturvedi V, Kumar A. Metabolism dependent chemotaxis of Pseudomonas aeruginosa N1 towards anionic detergent sodium dodecyl sulfate. Indian J Microbiol. 2014 Jun 1;54(2):134-8.
Shahbazi R, Kasra-Kermanshahi R, Gharavi S, Moosavi- Nejad Z, Borzooee F. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity. Iran J Microbiol. 2013;5(2):153-8.
Furmanczyk EM, Kaminski MA, Spolnik G, Sojka M, Danikiewicz W, Dziembowski A, et al. Isolation and characterization of Pseudomonas spp. strains that efficiently decompose sodium dodecyl sulfate. Front Microbiol [Internet]. 2017 [cited 2019 Jun 9];8. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2017.01872/full
Furmanczyk EM, Kaminski MA, Lipinski L, Dziembowski A, Sobczak A. Pseudomonas laurylsulfatovorans sp. nov., sodium dodecyl sulfate degrading bacteria, isolated from the peaty soil of a wastewater treatment plant. Syst Appl Microbiol. 2018 Jul;41(4):348-54.
Icgen B, Salik SB, Goksu L, Ulusoy H, Yilmaz F. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters. Water Sci Technol J Int Assoc Water Pollut Res. 2017 Nov;76(9-10):2357-66.
Osadebe AU, Onyiliogwu CA, Suleiman BM, Okpokwasili GC. Microbial degradation of anionic surfactants from laundry detergents commonly discharged into a riverine ecosystem. J Appl Life Sci Int. 2018 Apr 3;1-11.
Faria CV de, Delforno TP, Okada DY, Varesche MBA. Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage. Environ Technol. 2019 Apr 3;40(8):988-96.
Hong-yu NIU, Qian SHU, Hai-jun Y, Zhi-yong Y a. N, Ju T a. N. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium. Biotechnol Bull. 2022 Dec 26;38(12):287.
Najim AA, Ismail ZZ, Hummadi KK. Biodegradation potential of sodium dodecyl sulphate (SDS) by mixed cells in domestic and non-domestic actual wastewaters: Experimental and kinetic studies. Biochem Eng J. 2022 Mar 1;180:108374.
Aisami A, Yasid NA, Johari WLW, Ahmad SA, Shukor MY. Effect of temperature and ph on phenol biodegradation by a newly identified Serratia sp. AQ5-03. Open J Biosci Res ISSN 2734-2069. 2020 May 12;1(1):28-43.
Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):41-5.
Lillis V, Dodgson KS, White GF, Payne WJ. Initiation of activation of a preemergent herbicide by a novel alkylsulfatase of Pseudomonas putida FLA. Appl Environ Microbiol. 1983;46(5):988-94.
Kahnert A a, Kertesz MA a b c. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J Biol Chem. 2000;275(41):31661-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Environmental Microbiology and Toxicology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).