Modelling the Kinetics of Tartrazine Sorption by Bottom Ash

Authors

  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Ain Aqilah Basirun Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Hartinie Marbawi Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v10i2.773

Keywords:

Adsorption, Tartrazine, Bottom ash, Kinetics, Error function

Abstract

Bottom ash is the solid residue left over from municipal waste combustion or incineration in a Municipal Waste Incineration Furnace. Its use as a sorption agent, particularly for dye sorption, is a new and important application. Linearized adsorption kinetics has drawbacks such as inaccurate representation of the parameters' 95 percent confidence interval output, unbalanced attention to potential outliers, and magnification of errors may result in inaccurate parameter values. In this study, we used nonlinear regression to investigate 16 adsorption kinetics models of tartrazine by bottom ash. The pseudo-second order was the best model based on the Bias and Accuracy factor near unity, but based on other error function analysis, this model performs equally well with the exponential and fractal-like pseudo-second order based other error functions such as  Root-Mean-Square Error (RMSE), adjusted coefficient of determination (adjR2), Marquardt’s percent standard deviation (MPSD), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQC), and especially the corrected Akaike Information Criterion (AICc) function as the absolute difference is 5 absolute unit making discriminatory activity difficult. Furthermore, because the pseudo-second order and exponential models have only two parameters, they are less complicated according to Occam's razor. Because the pseudo-second order model is more popular and has more applications than the less well-known exponential model, we chose it as the best model for tartrazine sorption to bottom ash. Kinetic analysis using the PSO model gave a value of equilibrium adsorption capacity, qe of 21.88 mg g-1 (95% confidence interval (C.I.), 20.93 to 22.84) and k2 (g/(mg.sec)) of 0.00002 (95%, C.I., 0.00001 to 0.00002).

References

Jayanth N, Karthik R, Logesh S, K SR, Vijayanand K. Environmental issues and its impacts associated with the textile processing units in. 2nd Int Conf Environ Sci Dev IPCBEE. 2011;4(17):120-4.

Kurade MB, Awasthi MK, Govindwar SP, Jeon BH, Kalyani D. Editorial: Microbiotechnology Tools for Wastewater Cleanup and Organic Solids Reduction. Front Microbiol. 2021;12(February):10-2.

Singh KP, Gupta S, Singh AK, Sinha S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J Hazard Mater. 2011;186(2-3):1462-73.

Chavan RB. Indian textile industry - Environmental issues. Indian J Fibre Text Res. 2001;26(1-2):11-21.

Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol. 2007;98(7):1405-10.

Kumar P, Bhati H, Rani A, Singh R. Role of Biosorption of Dyes and Microorganisms in Environment. Life Sci. 2015;4(2):38-41.

Mohan S, Muralimohan N, Vidhya K, Sivakumar CT. a Case Study on-Textile Industrial Process, Characterization and Impacts of Textile Effluent. Indian JSciRes. 2017;17(1):80-084.

Islam MM, Mahmud K, Faruk O, Billah S. Assessment of environmetal impacts for textile dyeing industries in Bangladesh. Proc Int Conf Green Technol Environ Conserv GTEC-2011. 2011;2(6):173-81.

Izuan M, Halmi E, Gunasekaran B, Razi Othman A, Dahalan FA. A rapid inhibitive enzyme assay for monitoring heavy metals pollution in the Juru Industrial Estate [Internet]. Vol. 3, Bioremediation Science and Technology Research. 2015 [cited 2021 Jun 11]. p. 7-12. Available from: http://journal.hibiscuspublisher.com/index.php/BSTR/index

Manogaran M, Yasid NA, Othman AR, Gunasekaran B, Izuan M, Halmi E, et al. Biodecolourisation of Reactive Red 120 as a Sole Carbon Source by a Bacterial Consortium-Toxicity Assessment and Statistical Optimisation. Public Health. 2021;18:2424.

Lellis B, Fávaro-polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. 2019;

Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol. 2006;44(8):618-26.

Karim ME, Dhar K, Hossain MT. Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened from Textile Dyeing Effluent. J Genet Eng Biotechnol. 2018;16(2):375-80.

?enol ZM. Effective biosorption of Allura red dye from aqueous solutions by the dried-lichen (Pseudoevernia furfuracea) biomass. Int J Environ Anal Chem. 2020;00(00):1-15.

El-Idreesy TT, Khoshala O, Firouzi A, Elazab HA. Equilibrium and kinetic study on the biosorption of trypan blue from aqueous solutions using avocado seed powder. Biointerface Res Appl Chem. 2021;11(3):11042-53.

Walker GM, Weatherley LR. Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut. 2000;219-23.

Vijayaraghavan K, Yun Y sang. Utilization of fermentation waste ( Corynebacterium glutamicum ) for biosorption of Reactive Black 5 from aqueous solution. 2007;141:45-52.

Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26(3):266-91.

Wang Y, Jiang L, Shang H, Li Q, Zhou W. Environmental Technology & Innovation Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica. Environ Technol Innov. 2020;19:100810.

Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Lee Hu T. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 2001;35(12):2841-50.

Lade H, Kadam A, Paul D, Govindwar S. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium. 2015;3480-505.

Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M. Asiri A, et al. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des. 2019;25(34):3645-63.

Shiralipour R, Larki A. Pre-concentration and determination of tartrazine dye from aqueous solutions using modified cellulose nanosponges. Ecotoxicol Environ Saf. 2017 Jan 1;135:123-9.

Methneni N, González JAM, Van Loco J, Anthonissen R, de Maele JV, Verschaeve L, et al. Ecotoxicity profile of heavily contaminated surface water of two rivers in Tunisia. Environ Toxicol Pharmacol. 2021 Feb 1;82:103550.

Bateman B, Warner JO, Hutchinson E, Dean T, Rowlandson P, Gant C, et al. The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Arch Dis Child. 2004 Jun 1;89(6):506-11.

Doguc D, Aktas A, Gazioglu N, Kocabas CN. Tartrazine and other azo dyes: a review of literature. Food Chem Toxicol. 2013;62:340-50.

Matsuo H, Kato K, Ohno Y, Kato S. The effect of tartrazine on histamine release from human basophils. Allergol Int. 2013;62(4):539-47.

Khayyat MA, Al-Qahtani JA, Al-Saleh YA, Al-Mofleh IA. The prevalence of food additives intolerance in adult patients with chronic urticaria. Int J Dermatol. 2017;56(5):536-41.

Bhatt S, Kamat D. The Role of Tartrazine in the Development of Asthma and Allergic Rhinitis in Children. J Allergy Clin Immunol Pract. 2018;6(4):1251-8.

Ara&uacute L, Caldas J, Fl&aacute, Marmo VC, Patr&iacute, Costa CD, et al. Hormesis in tartrazine allergic responses of atopic patients: An overview of clinical trials and a raw data revision. Environ Dis. 2020 Jul 1;5(3):59-59.

Corder R, Buckley D. Tartrazine and respiratory symptoms. Thorax. 1995;50(6):663-6.

Yong SB, Gau SY, Guo YC, Wei JCC. Allergy from perspective of environmental pollution effects: from an aspect of atopic dermatitis, immune system, and atmospheric hazards-a narrative review of current evidences. Environ Sci Pollut Res. 2022 Aug 1;29(38):57091-101.

González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR. A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Sep Purif Rev. 2021 Aug 1;0(0):1-15.

Rohatgi A. WebPlotDigitizer User Manual. HttparohatgiinfoWebPlotDigitizerapp Accessed June 2 2014. 2013;1-17.

Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J Hazard Mater. 2007;146(1-2):243-8.

Tran H. Differences between Chemical Reaction Kinetics and Adsorption Kinetics: Fundamentals and Discussion. 2022 Jun 22;

Lagergren, S. About the theory of so-called adsorption of soluble substances. Kongliga Sven Vetenskapsakademiens Handl. 1898;24(4):1-39.

Ho YS, Mckay G. Sorption of Dye From Aqueous Solution by Peat. Chem Eng J. 1998 Jun 1;70:115-24.

Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-7.

Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater. 2009;162(2-3):616-45.

Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017 Sep 1;120:88-116.

Lagergren S, Svenska K. , "About the theory of so-called adsorption of soluble substances, Zur theorie der sogenannten adsorption gel?ster stoffe,." Vetenskapsakademiens Handl. 1898;24:1-39.

Blanchard G, Maunaye M, Martin G. Water Res. 1984;18:1501-7.

Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999 Jul;34(5):451-65.

Cope FW. Generalizations of the Roginsky-Zeldovich (or Elovich) equation for charge transport across biological surfaces. Bull Math Biophys. 1972 Sep 1;34(3):419-27.

Marczewski AW. Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl Surf Sci. 2010;256(17):5145-52.

Hu Q, Pang S, Wang D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep Purif Rev. 2021 Jul 1;0(0):1-19.

Haerifar M, Azizian S. Fractal-Like Kinetics for Adsorption on Heterogeneous Solid Surfaces. J Phys Chem C. 2014 Jan 6;118:1129-34.

Tseng RL, Wu PH, Wu FC, Juang RS. A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-nth-order equation. Chem Eng J. 2014 Feb 1;237:153-61.

Weng CH, Pan YF. Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids Surf Physicochem Eng Asp. 2006 Feb 15;274(1):154-62.

Kuo S, Lotse E. Kinetics of phosphate adsorption and desorption by hematite and gibbsite1. Soil Sci. 1973 Dec 1;116:400-6.

Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys. 1940 Feb 1;8:212-24.

Haerifar M, Azizian S. An exponential kinetic model for adsorption at solid/solution interface. Chem Eng J. 2013 Jan 15;s 215-216:65-71.

Wilczak A, Keinath T. Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon. Water Environ Res. 1993 May 1;65:238-44.

Eris S, Azizian S. Analysis of adsorption kinetics at solid/solution interface using a hyperbolic tangent model. J Mol Liq. 2017 Feb 1;231.

Brouers F, Al-Musawi TJ. Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: A new strategy to analyze the pollutants sorption kinetics in porous materials. J Hazard Mater. 2018 May 15;350:162-8.

Brouers F, Sotolongo-Costa O. Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Phys Stat Mech Its Appl. 2006;368(1):165-75.

Nayak AK, Pal A. Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. J Mol Liq. 2019 Feb 15;276:67-77.

Lawal WA, Choi H. Feasibility Study on the Removal of Perfluorooctanoic Acid by Using Palladium-Doped Nanoscale Zerovalent Iron. J Environ Eng. 2018 Nov 1;144(11):04018115.

Wayman M, Tseng MC. Inhibition?threshold substrate concentrations. Biotechnol Bioeng. 1976;18(3):383-7.

G?uszcz P, Petera J, Ledakowicz S. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor. Bioprocess Biosyst Eng. 2011;34(3):275-85.

Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995 Jun 1;90(430):773-95.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Foo KY, Hameed BH. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chem Eng J. 2012 Apr;187:53-62.

Kebir M, Trari M, Maachi R, Nasrallah N, Amrane A. Valorization of Inula viscosa waste extraction, modeling of isotherm, and kinetic for the tartrazine dye adsorption. Desalination Water Treat. 2015 Jun 1;54.

Chukwuemeka-Okorie HO, Ekuma FK, Akpomie KG, Nnaji JC, Okereafor AG. Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass. Appl Water Sci. 2021;11(2).

Gautam PK, Shivapriya PM, Banerjee S, Sahoo AK, Samanta SK. Biogenic fabrication of iron nanoadsorbents from mixed waste biomass for aqueous phase removal of alizarin red S and tartrazine: Kinetics, isotherm, and thermodynamic investigation. Environ Prog Sustain Energy. 2020;39(2).

Goscianska J, Ciesielczyk F. Lanthanum enriched aminosilane-grafted mesoporous carbon material for efficient adsorption of tartrazine azo dye. Microporous Mesoporous Mater. 2019;280:7-19.

Mirzajani R, Karimi S. Ultrasonic assisted synthesis of magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide for sonochemical simultaneous removal of sunset yellow and tartrazine dyes by response surface optimization: Application of derivative spectrophotometry. Ultrason Sonochem. 2019;50:239-50.

Torres-Pérez J, Muñoz-Armenta G, Réyes-López SY. Effect of microwave treatment onto activated carbon produced from pecan nut shells for Tartrazine removal from aqueous media. Int J Environ Pollut. 2018;63(4):298-319.

Albadarin AB, Charara M, Abu Tarboush BJ, Ahmad MNM, Kurniawan TA, Naushad M, et al. Mechanism analysis of tartrazine biosorption onto masau stones; a low cost by-product from semi-arid regions. J Mol Liq. 2017;242:478-83.

Gautam RK, Banerjee S, Sanroman MA, Chattopadhyaya MC. Synthesis of copper coordinated dithiooxamide metal organic framework and its performance assessment in the adsorptive removal of tartrazine from water. J Environ Chem Eng. 2017;5(1):328-40.

Bacioiu IG, Stoica L, Constantin C, Stanescu AM. Adsorption equilibrium and kinetics modeling for tartrazine(E102) - Fe(II) based adsorbent system. Rev Chim. 2016;67(12):2391-5.

Alcántara-Cobos A, Solache-Ríos MJ, Díaz-Nava MDC. Adsorption of tartrazine on an iron modified zeolitic tuff. Environ Eng Manag J. 2016;15(11):2453-8.

Gautam PK, Gautam RK, Banerjee S, Lofrano G, Sanroman MA, Chattopadhyaya MC, et al. Preparation of activated carbon from Alligator weed (Alternenthera philoxeroids) and its application for tartrazine removal: Isotherm, kinetics and spectroscopic analysis. J Environ Chem Eng. 2015;3(4):2560-8.

Ansari R, Keivani MB, Delavar AF. Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions. J Polym Res. 2011;18(6):1931-9.

Rodríguez-Zapién KV, Torres-Pérez J, Reyes-López SY. Environmental application of quartz-based construction waste: tartrazine removal from aqueous media. Int J Environ Sci Technol. 2022;19(10):10381-92.

Balayeva OO, Azizov AA, Muradov MB, Alosmanov RM. Removal of tartrazine, ponceau 4R and patent blue V hazardous food dyes from aqueous solutions with ZnAl-LDH/PVA nanocomposite. J Dispers Sci Technol. 2021;

Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2-10.

Yaneva ZL, Georgieva NV. Insights into Congo Red adsorption on agro-industrial materials - spectral. Int Rev Chem Eng. 2012;4(2):127-46.

Azizian S. Kinetic models of sorption: A theoretical analysis. J Colloid Interface Sci. 2004;276(1):47-52.

Tykodi R. Kinetics and thermodynamics of adsorption of dyes on activated carbon fibers. J Environ Manage. 2004;71(4):305-15.

Lin J, Wang Y. Kinetics of adsorption of dyes from aqueous solution onto modified corn straw. J Hazard Mater. 2009;161(2-3):923-8.

Simonin O. Kinetics and thermodynamics of adsorption of dyes on activated carbon fibers. J Environ Manage. 2016;181:100-9.

Hu Y, Li L, Wang Y. Kinetics of adsorption of anionic and cationic dyes on biochar. J Environ Manage. 2018;212:166-74.

Moussout N, Simonin O, Leclère Q. Kinetics and thermodynamics of adsorption of anionic and cationic dyes on biochars. J Environ Manage. 2018;210:112-20.

Ho YS, McKay G, Healy TW. The intraparticle diffusion model applied to adsorption systems. J Colloid Interface Sci. 2000;230(2):117-25.

Plazinski J, Rudzinski W. Kinetics of adsorption of dyes from aqueous solutions on activated carbon. J Colloid Interface Sci. 2009;335(2):476-81.

Gautam RK, Gautam PK, Banerjee S, Rawat V, Soni S, Sharma SK, et al. Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. J Environ Chem Eng. 2015;3(1):79-88.

Wan Ngah WS, Ariff NFM, Hanafiah MAKM. Preparation, Characterization, and Environmental Application of Crosslinked Chitosan-Coated Bentonite for Tartrazine Adsorption from Aqueous Solutions. Water Air Soil Pollut. 2010 Feb 1;206(1):225-36.

Mittal A, Mittal J, Kurup L. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents. J Hazard Mater. 2006 Aug 25;136(3):567-78.

Dotto GL, Vieira MLG, Pinto LAA. Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Ind Eng Chem Res. 2012 May 16;51(19):6862-8.

Downloads

Published

31.12.2022

How to Cite

Yasid, N. A., Basirun, A. A., & Marbawi, H. (2022). Modelling the Kinetics of Tartrazine Sorption by Bottom Ash. Journal of Environmental Microbiology and Toxicology, 10(2), 48–58. https://doi.org/10.54987/jemat.v10i2.773

Issue

Section

Articles