Central Composite Design-based Optimization of Staphylococcus sp. strain Amr-15 Growth on Acrylamide as a Nitrogen Source

Authors

  • Mohd Fadhil Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Ezuan Khayat Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mahmoud Abd EL-Mongy Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
  • Hafeez Mohd Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Nigeria.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v10i2.735

Keywords:

Acrylamide, Staphylococcus sp, bioremediation, CCD, RSM

Abstract

As an approach for bioremediation, the decomposition of acrylamide by microorganisms has received gradual but persistent worldwide interest. Prior to this study, a molybdenum-reducing bacteria had been identified and exhibited the ability to breakdown amides. Its key growth parameters on acrylamide were further investigated. A Central Composite Design (CCD) was employed to optimize the two previously identified key factors (incubation time and acrylamide concentration). For the examination of the significant factors or parameters, ANOVA, the perturbation plot, and numerous other diagnostic plots were employed. Using the "Numerical Optimisation" toolbox of Design Expert software, predicted ideal conditions were calculated. There were two ideal conditions investigated. The first was to determine the optimal growth under the employed range of variables, while the second was to forecast the optimal growth at the greatest acceptable acrylamide concentration of 1 g/L. The solution for the first predicted model predicted a maximum growth of 8.96 Log CFU/mL (95 percent confidence interval from 8.19 to 9.73), which was confirmed by experimental results with a growth of 9.88 Log CFU/mL (95 percent confidence interval from 9.79 to 9.97), which was close to the predicted values but significantly greater than the predicted values. The second numerical optimization for maximum growth with the highest acrylamide content. The solution had a predicted maximum growth of 7.81 Log CFU/mL (95 percent C.I. from 7.06 to 8.57) and was experimentally confirmed to have a growth of 8.74 Log CFU/mL (95 percent C.I. from 8.56 to 8.92), with the difference not being statistically significant (p0.05) indicating close agreement between predicted and experimental values. The findings of the RSM exercise demonstrated that growth on acrylamide may be optimized more efficiently with RSM than with OFAT, indicating that RSM is more useful in this regard than OFAT.

References

Spencer P, Schaumburg HH. Nervous system degeneration produced by acrylamide monomer. Environ Health Perspect. 1975 Jun 1;11:129-33.

Sega GA, Valdivia Alcota RP, Tancongco CP, Brimer PA. Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat Res Mutagen Relat Subj. 1989 Aug 1;216(4):221-30.

Tyl RW, Friedman MA. Effects of acrylamide on rodent reproductive performance. Reprod Toxicol. 2003 Jan 1;17(1):1-13.

Yang HJ, Lee SH, Jin Y, Choi JH, Han CH, Lee MH. Genotoxicity and toxicological effects of acrylamide on reproductive system in male rats. J Vet Sci. 2005 Jun;6(2):103-9.

Backer LC, Dearfield KL, Erexson GL, Campbell JA, Westbrook?Collins B, Allen JW. The effects of acrylamide on mouse germ-line and somatic cell chromosomes. Environ Mol Mutagen. 1989;13(3):218-26.

Mottram, DS, Wedzicha BL, Dobson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419:448-9.

Zamora R, Delgado RM, Hidalgo FJ. Strecker aldehydes and ?-keto acids, produced by carbonyl-amine reactions, contribute to the formation of acrylamide. Food Chem. 2011;128(2):465-70.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001;27(4):219-26.

Igisu H, Goto I, Kawamura Y, Kato M, Izumi K. Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry. 1975;38(6):581-4.

Eikmann T, Herr C. How dangerous is actually acrylamide exposure for the population. Umweltmed Forsch Prax. 2002;7(6):307-8.

Pruser KN, Flynn NE. Acrylamide in health and disease. Front Biosci - Sch. 2011;3 S(1):41-51.

Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M. Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health. 2013;10(9):3843-54.

Rahim MBH, Syed MA, Shukor MY. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp . strain MBH23 KCTC 11960BP. J Basic Microbiol. 2012;52(5):573-81.

Wakaizumi M, Yamamoto H, Fujimoto N, Ozeki K. Acrylamide degradation by filamentous fungi used in food and beverage industries. J Biosci Bioeng. 2009;108(5):391-3.

Wampler DA, Ensign SA. Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Appl Environ Microbiol. 2005;71(10):5850-7.

Buranasilp K, Charoenpanich J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J Environ Sci. 2011;23(3):396-403.

Charoenpanich J, Tani A. Proteome analysis of acrylamide-induced proteins in a novel acrylamide-degrader Enterobacter aerogenes by 2D electrophoresis and MALDI-TOF-MS. Chiang Mai Univ J Nat Sci. 2014;13(1):11-22.

Gusmanizar N, Shukor Y, Ramli J, Syed MA. Isolation and characterization of an acrylamide-degrading Burkholderia sp. strain DR.Y27. J Ris Kim. 2015 Feb 11;2(1):34.

Yu F, Fu R, Xie Y, Chen W. Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. Int J Environ Res Public Health. 2015;12(4):4214-30.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Aisami A, Gusmanizar N. Characterization of an acrylamide-degrading bacterium isolated from hydrocarbon sludge. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):15-9.

Othman AR, Rahim MBHA. Modelling the Growth Inhibition Kinetics of Rhodotorula sp. strain MBH23 (KCTC 11960BP) on Acrylamide. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):20-5.

Rusnam, Gusmanizar N. An Acrylamide-degrading Bacterial Consortium Isolated from Volcanic Soil. J Biochem Microbiol Biotechnol. 2021 Dec 31;9(2):19-24.

Rusnam, Gusmanizar N. Characterization of An Acrylamide-degrading Bacterium Isolated from Volcanic Soil. J Environ Bioremediation Toxicol. 2022 Aug 5;5(1):32-7.

Araujo PW, Brereton RG. Experimental design II. Optimization. TrAC - Trends Anal Chem. 1996;15(2):63-70.

Antony J. Design of Experiments for Engineers and Scientists. 1 edition. Oxford?; Burlinton, MA: Butterworth Heinemann; 2003. 152 p.

Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, et al. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. J Environ Health Sci Eng. 2019 Dec 1;17(2):873-88.

Whitcomb PJ, Anderson MJ. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. 2nd ed. New York, New York: Productivity Press; 2016. 304 p.

Khuri IA, Mukhopadhyay S. Response surface methodology. Adv Rev WIREs Comput Stat John Wiley Sons Inc. 2010;2:128-49.

Karamba KI, Ahmad SA, Zulkharnain A, Syed MA, Khalil KA, Shamaan NA, et al. Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei. 2016 Sep;27(3):533-45.

Annadurai G, Ling LY, Lee J fwu. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J Hazard Mater. 2008;151:171-8.

Ibrahim S, Shukor MY, Khalil KA, Halmi MIE, Syed MA, Ahmad SA. Application of response surface methodology for optimising caffeine-degrading parameters by Leifsonia sp. strain SIU. J Environ Biol. 2015 Sep;36(5):1215-21.

Ahmad WA, Zakaria ZA, Zakaria Z, Surif S. Hexavalent Chromium Reduction at Different Growth Phases of Acinetobacter haemolyticus. 2009;26(7):1275-8.

Anderson MJ, Whitcomb PJ. RSM simplified: optimizing processes using response surface methods for design of experiments. 2nd ed. Boca Raton, FL, USA.: Productivity Press; 2016.

Halmi MIE bin, Abdullah SRS, Wasoh H, Johari WLW, Ali MS bin M, Shaharuddin NA, et al. Optimization and maximization of hexavalent molybdenum reduction to Mo-blue by Serratia sp. strain MIE2 using response surface methodology. Rendiconti Lincei. 2016 Dec 1;27(4):697-709.

Yakasai MH. A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia. Universiti Putra Malaysia; 2017.

Rodrigues RCLB, Kenealy WR, Dietrich D, Jeffries TW. Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis. Bioresour Technol. 2012;108:134-9.

Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals. Am Stat. 2001;55(3):182-6.

Kumar N, Sinha S, Mehrotra T, Singh R, Tandon S, Thakur IS. Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresour Technol Rep. 2019 Dec 1;8:100311.

Chelladurai SJS, K. M, Ray AP, Upadhyaya M, Narasimharaj V, S. G. Optimization of process parameters using response surface methodology: A review. Mater Today Proc [Internet]. 2020 Jul 24 [cited 2020 Dec 21]; Available from: http://www.sciencedirect.com/science/article/pii/S2214785320349440

Box GEP, Behnken DW. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics. 1960 Nov 1;2(4):455-75.

Downloads

Published

31.12.2022

How to Cite

Rahman, M. F., Khayat, M. E., EL-Mongy, M. A. ., Yakasai, H. M., Yasid, N. A., & Shukor, M. Y. (2022). Central Composite Design-based Optimization of Staphylococcus sp. strain Amr-15 Growth on Acrylamide as a Nitrogen Source. Journal of Environmental Microbiology and Toxicology, 10(2), 13–22. https://doi.org/10.54987/jemat.v10i2.735

Issue

Section

Articles