Isothermal Modelling of the Adsorption of Lead(II) Onto an Antarctic Sea-Ice Bacterial Exopolysaccharide

Authors

  • Muhammed Abdullahi Ubana Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Murtala Ya'u Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University Kano, Nigeria.
  • Hartinie Marbawi Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v10i1.694

Keywords:

Biosorption, Lead (II), Isotherm, Antarctic sea-ice bacterial exopolysaccharide, Sips

Abstract

The biosorption of the biosorption of lead(II) onto an Antarctic sea-ice bacterial exopolysaccharide is remodeled using nonlinear regression and the optimal mode was determined by a series of error function assessments. The Sips model performed best in statistical tests including root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), and corrected Akaike Information Criterion (AICc) which is not the same to the originally published work using a linearized form where the Langmuir and Freundlich models best represent the biosorption and the maximum biosorption capacity. The calculated Sips parameters kS (l/g) value of 0.10 (95% confidence interval from 0.08 to 0.13), a maximum monolayer adsorption capacity qmS (mg/g) value of 252.88 (95% C.I. from 222.13 to 283.64) and nS (Sips model exponent) value of 1.16 (95% C.I. from 1.34 to 1.98). This study indicates that a different isotherm model can be obtained using nonlinear regression compared to the popular linearized form that may give relatively inaccurate outcome.

References

Raviraja A, Vishal Babu GN, Sehgal A, Saper RB, Jayawardene I, Amarasiriwardena CJ, et al. Three cases of lead toxicity associated with consumption of ayurvedic medicines. Indian J Clin Biochem. 2010;25(3):326-9.

Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol. 2011;2011:870125.

Nepalia A, Singh A, Mathur N, Pareek S. Toxicity assessment of popular baby skin care products from Indian market using microbial bioassays and chemical methods. Int J Environ Sci Technol. 2018 Nov 1;15(11):2317-24.

Zhang Z, Cai R, Zhang W, Fu Y, Jiao N. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drugs [Internet]. 2017;15(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020838645&doi=10.3390%2fmd15060175&partnerID=40&md5=69ae60a80ebcf8c4124e47071e75c699

Ma Y, Shen B, Sun R, Zhou W, Zhang Y. Lead(II) biosorption of an Antarctic sea-ice bacterial exopolysaccharide. Desalination Water Treat. 2012 Apr 1;42(1-3):202-9.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1(5):365-74.

Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017 Sep 1;120:88-116.

Ridha FN, Webley PA. Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites. Sep Purif Technol. 2009;67(3):336-43.

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361-403.

Adamson AW. Physical chemistry of surfaces. New York: UMI; 1993. 664 p.

Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16(5):490-5.

Toth J. State equations of the solid-gas interface layers. Acta Chim Acad Sci Hung. 1971;69(3):311-28.

Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309-19.

Baudu M. Etude des interactions solute-fibres de charbon actif. Application et regeneration. Universite de Rennes I; 1990.

Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci. 1974;29(5):1279-82.

Rohatgi A. WebPlotDigitizer. http://arohatgi.info/WebPlotDigitizer/app/ Accessed June 2 2014.; 2015.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-5.

Khare KS, Phelan Jr FR. Quantitative comparison of atomistic simulations with experiment for a cross-linked epoxy: A specific volume-cooling rate analysis. Macromolecules. 2018;51(2):564-75.

Akaike H. New look at the statistical model identification. IEEE Trans Autom Control. 1974;AC-19(6):716-23.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995 Jun 1;90(430):773-95.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Sips R. Combined form of Langmuir and Freundlich equations. J Chem Phys. 1948;16(429):490-5.

Sivarajasekar N, Baskar R. Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis. Desalination Water Treat. 2014 Dec 6;52(40-42):7743-65.

Rahimi S, Moattari RM, Rajabi L, Derakhshan AA, Keyhani M. Iron oxide/hydroxide (?,?-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J Ind Eng Chem. 2015 Mar 25;23:33-43.

Zhang M, Zhu L, He C, Xu X, Duan Z, Liu S, et al. Adsorption performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal by a ?-cyclodextrin derivative. Environ Sci Pollut Res. 2019 Feb 1;26(5):5094-110.

Neris JB, Luzardo FHM, Santos PF, de Almeida ON, Velasco FG. Evaluation of single and tri-element adsorption of Pb2+, Ni2+ and Zn2+ ions in aqueous solution on modified water hyacinth (Eichhornia crassipes) fibers. J Environ Chem Eng. 2019 Feb 1;7(1):102885.

Divband Hafshejani L, Mortazavi P, Sabz ALiPour S, Brooman Nasab S. Isotherm and Kinetics Study of The Adsorption of Chromium (VI) From Aqueous Solution by Zizyphus Spina-christi Leaves Ash Nanoparticles. Irrig Sci Eng. 2016 Dec 21;39(4):97-110.

Bellaloui M, Metouchi A, Foukrache A, Larabi S, Semaoune F. Retention of a heavy metal by marl collected from aquifer substratum. Arab J Geosci. 2017 Oct 2;10(19):425.

Anirudhan TS, Deepa JR, Christa J. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci. 2016 Apr 1;467:307-20.

Veli?kovi? ZS, Marinkovi? AD, Baji? ZJ, Markovi? JM, Peri?-Gruji? AA, Uskokovic PS, et al. Oxidized and Ethylenediamine-Functionalized Multi-Walled Carbon Nanotubes for the Separation of Low Concentration Arsenate from Water. Sep Sci Technol. 2013 Sep 2;48(13):2047-58.

Mondal S, Sinha K, Aikat K, Halder G. Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk. J Environ Chem Eng. 2015 Mar 1;3(1):187-95.

Pasalari H, Ghaffari H, Mahvi A, Pourshabanian M, Azari A. Activated carbon derived from date stone as natural adsorbent for phenol removal from aqueous solution. DESALINATION WATER Treat. 2017 Jan 1;72:406-17.

Awadallah-F A. Adsorptive Removal of Malachite Green Chloride and Reactive Red-198 from Aqueous Solutions by Using Multiwall Carbon Nanotubes-Graft-Poly (2-acrylamido-2-methyl-1-propanesulfonic acid). J Polym Environ. 2017 Jun 1;25(2):258-76.

da Rosa ALD, Carissimi E, Dotto GL, Sander H, Feris LA. Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J Clean Prod. 2018 Oct 10;198:1302-10.

Lu Y, Lim L, Priyantha N. Chemical modification of pomelo leaves as a simple and effective way to enhance adsorption toward methyl violet dye. Desalination Water Treat. 2020 Jan 1;197:379-91.

Saadi Z, Fazaeli R, Vafajoo L, Naser I. Adsorptive removal of apramycin antibiotic from aqueous solutions using Tween 80-and Triton X-100 modified clinoptilolite: experimental and fixed-bed modeling investigations. Int J Environ Health Res. 2020 Sep 2;30(5):558-83.

Khadir A, Motamedi M, Negarestani M, Sillanpää M, Sasani M. Preparation of a nano bio-composite based on cellulosic biomass and conducting polymeric nanoparticles for ibuprofen removal: Kinetics, isotherms, and energy site distribution. Int J Biol Macromol. 2020 Nov 1;162:663-77.

Rahdar S, Rahdar A, Ahmadi S, Zafar MN, Mohamadi L, Labuto G, et al. Removal of sulfonated azo reactive red 198 from water by CeO2 nanoparticles. Environ Nanotechnol Monit Manag. 2020 Dec 1;14:100384.

Wernke G, Fernandes Silva M, Silva EA da, Fagundes-Klen MR, Suzaki PYR, Triques CC, et al. Ag and CuO nanoparticles decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water. Colloids Surf Physicochem Eng Asp. 2021 Oct 20;627:127203.

Tangarfa M, Hassani NSA. Experimental stuy of tannic acid adsorption on fluorite surface: particle size effect and isotherm modelling. In: 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). 2022. p. 1-4.

de Morais Pinos JY, de Melo LB, de Souza SD, Marçal L, de Faria EH. Bentonite functionalized with amine groups by the sol-gel route as efficient adsorbent of rhodamine-B and nickel (II). Appl Clay Sci. 2022 Jun 15;223:106494.

Downloads

Published

31.07.2022

How to Cite

Ubana, M. A. ., Ya’u, M. ., Marbawi, H. ., Yasid, N. A., & Shukor, M. Y. (2022). Isothermal Modelling of the Adsorption of Lead(II) Onto an Antarctic Sea-Ice Bacterial Exopolysaccharide. Journal of Environmental Microbiology and Toxicology, 10(1), 23–27. https://doi.org/10.54987/jemat.v10i1.694

Issue

Section

Articles