Multifunctional Applications of Bacterial Cellulose: Bridging Food, Cosmetic and Environmental Sectors

Authors

  • Helmi Wasoh Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Murni Halim Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Nor'Aini Abdul Rahman Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Zulfazli M. Sobri Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Mohd Termizi Yusof Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Mohd Sabri Pak-Dek Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Yanty Noorzianna Abdul Manaf Halal Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.

DOI:

https://doi.org/10.54987/jemat.v13i2.1148

Keywords:

Bacterial cellulose, Sustainable biomaterial, Food packaging, Wastewater treatment, Paper reinforcement

Abstract

In recent years, with increasing demand for sustainable, environmentally friendly materials, bacterial cellulose (BC) has attracted significant attention as a promising biomaterial. BC possesses excellent mechanical strength, good biocompatibility, extremely high water-holding capacity (more than 100 times its own weight), and can be easily modified. These unique properties make BC superior to plant cellulose in many applications. This review summarizes recent progress in BC across several important fields. In the food industry, BC has been widely used as edible films and coatings, enhancing the shelf life of fresh products. Moreover, when natural antimicrobial agents or pH indicators were incorporated, active and intelligent packaging were developed. As a food additive, BC acts as a high-quality dietary fiber that can adsorb cholesterol and bile salts in the gastrointestinal tract. BC also improves the texture of low-calorie foods and protects probiotic bacteria during storage. In the cosmetic field, BC is well-suited for facial masks because its three-dimensional structure can hold a large amount of active compounds and conform well to the skin surface. When BC was combined with propolis or other natural extracts, the antioxidant and anti-aging effects were greatly enhanced. In wastewater treatment, the abundant hydroxyl groups and large surface area enable heavy metal ions and organic dyes to be removed effectively. Besides, BC has been used as a reinforcement material in the paper and textile industries. The addition of BC greatly increases tensile strength and provides hydrophobicity while maintaining complete biodegradability. Although BC has numerous excellent properties and great potential in many fields, large-scale production still faces some challenges, mainly high costs and low yields. The use of agro-industrial waste as a substrate and the development of new bioreactors can significantly reduce production costs. Based on the above-mentioned research, it is clear that BC will play an important role in the future sustainable industry.

References

Andriani D, Apriyana AY, Karina M. The optimization of Bacterial Cellulose Production and its Applications: a Review. Cellulose. 2020. https://doi.org/10.1007/S10570-020-03273-9

Infante-Neta AA, D'Almeida AP, Albuquerque TL. Bacterial Cellulose in Food Packaging: A Bibliometric Analysis and Review of Sustainable Innovations and Prospects. Processes. 2024;12(9):1975. https://doi.org/10.3390/pr12091975

Ghadami A, Esmaeilpour M. Development of Active Chitosan Film Based on Bacterial Cellulose Nanofiber Incorporated with ZnO Nanoparticles for Monitoring Hamburger Spoilage. J Food Process Preserv. 2025;2025(1):6475174. https://doi.org/10.1155/jfpp/6475174

Miao W, Gu R, Shi X, Zhang J, Yu L, Xiao H, Li C. Indicative Bacterial Cellulose Films Incorporated with Curcumin-Embedded Pickering Emulsions: Preparation, Antibacterial Performance, and Mechanism. Chem Eng J. 2024;153284. https://doi.org/10.1016/j.cej.2024.153284

Zhang W, Zhang Q, Wang J, Zhang L, Dong Z. Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. Molecules. 2022;27(11):3495. https://doi.org/10.3390/molecules27113495

Isopencu G, Duja DE, Criveanu-Stamatie GD, Mitran R, Stefan A, Romanijan C, Brincoveanu O, Soare RG, Mocanu A. Integrating Bacterial Cellulose in Artisanal Ice Cream: A Farm-To-Fork Sustainable Approach. NPJ Sci Food. 2025. https://doi.org/10.1038/s41538-025-00536-2

Chong MF, Chou J. Enhanced Probiotic Stability and Functional Beverage Potential through Bacterial Cellulose Encapsulation of Saccharomyces boulardii. Chiang Mai J Sci. 2025. https://doi.org/10.12982/cmjs.2025.007

Ullah H, Santos HA, Khan T. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose. 2016. https://doi.org/10.1007/S10570-016-0986-Y

Girard V, Chaussé J, Vermette P. Bacterial Cellulose: A Comprehensive Review. J Appl Polym Sci. 2024. https://doi.org/10.1002/app.55163

Segueni N, Akkal S, Benlabed K, Nieto G. Potential Use of Propolis in Phytocosmetic as Phytotherapeutic Constituent. Molecules. 2022;27(18):5833. https://doi.org/10.3390/molecules27185833

Correa L, Meirelles GC, Balestrin LA, Souza PO, Moreira JCF, Schuh RS, Bidone J, Poser GL, Teixeira HF. In Vitro Protective Effect of Topical Nanoemulgels Containing Brazilian Red Propolis Benzophenones against UV-Induced Skin Damage. Photochem Photobiol Sci. 2020. https://doi.org/10.1039/D

Pham CD, Nguyen KD, Tran ATT, Le NTH, Ho PH, Le H. Bacterial Cellulose-Based Material from Coconut Water as Efficient Green Adsorbent for Heavy Metal Cations. Chem Eng Technol. 2023. https://doi.org/10.1002/ccat.202300033

Mir IS, Riaz A, Roy JS, Fréchette J, Morency S, Gomes OP, Dumée LF, Greener J, Messaddeq Y. Removal of Cadmium and Chromium Heavy Metals From Aqueous Medium using Composite Bacterial Cellulose Membrane. Chem Eng J. 2024;151665. https://doi.org/10.1016/j.cej.2024.151665

Wang Y, Guo Y, Yang C, Meng H, Li S, Sarp S, Li Z. Bio-inspired Fabrication of Adsorptive Ultrafiltration Membrane for Water Purification: Simultaneous Removal of Natural Organic Matters, Lead Ion and Organic Dyes. J Environ Chem Eng. 2023;109798. https://doi.org/10.1016/j.jece.2023.109798

Santos SM, Carbajo JM, Gómez N, Ladero M, Villar JC. Paper Reinforcing by In Situ Growth of Bacterial Cellulose. J Mater Sci. 2017. https://doi.org/10.1007/S10853-017-0824-0

Mehrotra RAMR, Sharma S, Kaur K. Bacterial Cellulose: An Ecological Alternative as A Biotextile. Biosci Biotechnol Res Asia. 2023. https://doi.org/10.13005/bbra/3101

Nayak R, Cleveland D, Tran G, Joseph F. Potential of Bacterial Cellulose for Sustainable Fashion and Textile Applications: A Review. J Mater Sci. 2024. https://doi.org/10.1007/s10853-024-09577-6

Sousa RBD, Pinesso G, Diedrichs RR, Silva CCD, Macêdo LPR. Bacterial Cellulose: A Multifunctional Platform for Biomedical Applications. J Mater Sci Technol Res. 2024;11(9). https://doi.org/10.31875/2410-4701.2024.11.09

Moreno-Diaz C, Gonzalez-Arranz S, Martinez-Cerezo C. Bacterial Cellulose Production within a Circular Economy Framework: Utilizing Organic Waste. Polymers. 2024;16(19):2735. https://doi.org/10.3390/polym16192735

Horue M, Silva JM, Berti IR, Brandao LR, Barud HS, Castro GR. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics. 2023;15(2):424. https://doi.org/10.3390/pharmaceutics15020424

Adepu S, Khandelwal M. Broad-spectrum Antimicrobial Activity of Bacterial Cellulose Silver Nanocomposites with Sustained Release. J Mater Sci. 2018. https://doi.org/10.1007/S10853-017-1638-9

Carvalho T, Guedes G, Sousa FL, Freire CSR, Santos HA. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol J. 2019. https://doi.org/10.1002/BIOT.201900059

Raut MP, Asare EO, Mohamed SMDS, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci. 2023;24(2):986. https://doi.org/10.3390/ijms24020986

Singh A, Sahi AA, Bajpai BK, Navinbhai AH, Pandey A, Singh M, Rajput S, Chaturvedi A. Potential of Bacterial Cellulose for Various Medical Applications. Indian Sci J Res Eng Manag. 2025. https://doi.org/10.55041/jjsrem52539

Liu Q. Application and Prospect of Modified Bacterial Cellulose in the Biomedical Field. Medscien. 2025. https://doi.org/10.61173/m8kj6518

Yanti NA, Ambardini S, Walhidayah T, Ahmad SW, Ramadhan LOAN, Santi M, Indrawati I, Muhsin M. Application of Antibacterial and Antioxidant Edible Coating Incorporating Bacterial Cellulose from Sago Liquid Waste and Garlic for Preservation of Tomato (Solamum lycopersicum L.). Int Food Res J.

Sulistyo J, Winarno PS, Pratiwi IY. Preparation of Active Food Packaging and Coating Material Based on Bacterial Cellulose to Increase Food Safety. J Teknol Ind Pangan. 2023;34(1):48. https://doi.org/10.6066/jtip.2023.34.1.48

Chen TY, Santoso SP, Lin SP. Using Formic Acid to Promote Bacterial Cellulose Production and Analysis of Its Material Properties for Food Packaging Applications. Fermentation. 2022;8(11):608. https://doi.org/10.3390/fermentation8110608

Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods. 2022;11(5):760. https://doi.org/10.3390/foods11050760

Agustin S, Cahyanto MN. Aplikasi Edible Coating Pati Sagu dengan Penguat Selulosa Bakterial Terhadap Karakteristik Buah Apel Potong. Agritekno. 2024;13(1). https://doi.org/10.30598/jagritekno.2024.13.1.166

Kamarudin SH, Rayung M, Abu F, Ahmad S, Fadil F, Karim AA, Norizan MN, Sarifuddin N, Desa MSZM, Basri MSM, Samsudin H, Abdullah LC. A Review on Antimicrobial Packaging from Biodegradable Polymer Composites. Polymers. 2022;14(1):174. https://doi.org/10.3390/polym14010174

Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers. 2022;14(2):315. https://doi.org/10.3390/polym14020315

Putra NR. Advances in Cellulose Composite Films for Sustainable Food Packaging: A Review. Nord Pulp Pap Res J. 2025. https://doi.org/10.1515/npprj-2025-0038

Santos GR, Soeiro VS, Talarico CF, Ataide JA, Lopes AM, Mazzola PG, Oliveira TJ, Junior JMO, Grotto D, Jozala AF. Bacterial Cellulose Membranes as Carriers for Nisin: Incorporation, Antimicrobial Activity, Cytotoxicity and Morphology. Polymers. 2022;14(17):3497. https://doi.org/10.3390/poly

Das SK, Vishakha K, Das S, Chakraborty D, Ganguli A. Carboxymethyl Cellulose and Cardamom Oil in a Nanoemulsion Edible Coating Inhibit the Growth of Foodborne Pathogens and Extend the Shelf Life of Tomatoes. Biocatal Agric Biotechnol. 2022;102369. https://doi.org/10.1016/j.bcab.2022.102369

Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of Bacterial Cellulose in the Food Industry and its Health-promoting Potential. Food Chem. 2024;141763. https://doi.org/10.1016/j.foodchem.2024.141763

Kasle P, Bains A, Goksen G, Dhull SB, Ali N, Nagarik R, Fareed M, Chawla P. Exploring the Properties of Carboxymethyl Cellulose Blended with Other Polymeric Compounds for the Formulation of Biodegradable Packaging Films and Edible Coatings: A Review. Compr Rev Food Sci Food Saf. 2025. https

El-Gendi H, Taha TH, Ray JB, Saleh AK. Recent Advances in Bacterial Cellulose: a Low-cost Effective Production Media, Optimization Strategies and Applications. Cellulose. 2022. https://doi.org/10.1007/s10570-022-04697-1

Marestoni LD, Barud HS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and Potential Applications of Bacterial Cellulose in Brazil: ten years review. Polimeros. 2021. https://doi.org/10.1590/0104-1428.09420

Jin TZ. Current State of the Art and Recent Innovations for Antimicrobial Food Packaging. 2017. https://doi.org/10.1007/978-1-4939-7556-3_16

Azimov A, Bolysbek AA, Iztleuov GM, Ashirbayev Z, Amirbekova E, Duissebayev SE. Development and Characterization of Novel Biodegradable Hydrogels with Controlled Moisture Release for Smart Packaging Materials. Polym Eng Sci. 2025. https://doi.org/10.1002/pen.70053

Lima N, Fernandes IAA. Bacterial Cellulose in Cosmetic Innovation: A review. Int J Biol Macromol. 2024;133396. https://doi.org/10.1016/j.ijbiomac.2024.133396

Gullo M, China SL, Falcone PM, Giudici P. Biotechnological Production of Cellulose by Acetic Acid Bacteria: Current State and Perspectives. Appl Microbiol Biotechnol. 2018. https://doi.org/10.1007/S00253-018-9164-5

Selim S, Harun-Ur-Rashid M, Hamoud YA, Shaghaleh H, Almuhayawi MS, Almehayawi MS, Jaouni SKA. Bacterial Cellulose: A Novel Antibacterial Material for Biomedical Applications, Wound Healing, and Sustainable Infection Control. Bioresources. 2025;20(4). https://doi.org/10.15376/biores.20.4.sel

Endres CM, Zeferino RCF, Bassani JC, Girardi GL, Cremonini S, Truppel YMP, Carminatti CA, Fernandes AC, Camillo BZ, Kielb GG, Zanetti M. Advances and Challenges in the Use of Bacterial Cellulose as a Bio-Ink for Bioprinting of Three-Dimensional Structures. E-Tech. 2025;18(1). https://doi.or

Valverde TM, Soares BNGS, Nascimento AM, Andrade AL, Sousa LR, Vieira PMA, Santos VR, Seibert JB, Almeida TCS, Rodrigues CF, Oliveira SRM, Martins FS, Junior JGF, Santos VMR. Anti-Inflammatory, Antimicrobial, Antioxidant and Photoprotective Investigation of Red Propolis Extract as Sunscreen

Silva MV, Moura NG, Motoyama AB, Ferreira VM. A Review of the Potential Therapeutic and Cosmetic Use of Propolis in Topical Formulations. J Appl Pharm Sci. 2020.

Saraiva N, Nicolai M, Martins M, Almeida N, Gusmini M, Mauricio E, Duarte MPAC, Goncalves M, Baby AR, Fernandes AS, Rosado C. Impact of Portuguese Propolis on Keratinocyte Proliferation, Migration and ROS Protection: Significance for Applications in Skin Products. Int J Cosmet Sci. 2022. ht

Giannakopoulou G, Pavlou P, Papageorgiou S, Siamidi A, Vlachou M, Varvaresou A. Use of Propolis and Echinacea Extracts as Alternatives to Organic Filter in Photoprotective Formulations. Nat Prod Res. 2025. https://doi.org/10.1080/14786419.2025.2456087

Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I. Recent advances and Applications of Bacterial Cellulose in Biomedicine. Polymers. 2021;13(3):412. https://doi.org/10.3390/%3E POLYM13030412

Pandey A, Singh M, Singh A. Bacterial Cellulose: A Smart Biomaterial for Biomedical Applications. J Mater Res. 2023. https://doi.org/10.1557/s43578-023-01116-4

Sayago UFC, Ballesteros VB, Aguilar A. Bacterial Cellulose-Derived Sorbents for Cr (VI) Remediation: Adsorption, Elution, and Reuse. Polymers. 2024;16(18):2605. https://doi.org/10.3390/polym16182605

Farag S, Ibrahim HM, Amr A, Asker MS, El-shafie A. Preparation and Characterization of Ion Exchanger Based on Bacterial Cellulose for Heavy Metal Cation Removal. Egypt J Chem. 2019. https://doi.org/10.21608/EJCHEM.2019.12622.1787

Luo H, Feng F, Yao F, Zhu Y, Yang Z, Wan Y. Improved Removal of Toxic Metal Ions by Incorporating Graphene Oxide into Bacterial Cellulose. J Nanosci Nanotechnol. 2020. https://doi.org/10.1166/JNN.2020.16902

Xu Y, Zhang Z, Cui Z, Luo L, Lin P, Xie M, Zhang Q, Sa B, Wen C. Enhanced Interfacial Interactions and Enriched Active Sites In Self-Assembly Amino-Functionalized Bacterial Cellulose/MXEne Composite For Wastewater Treatment. Chem Eng J. 2024;151078. https://doi.org/10.1016/j.cej.2024.151078

Le TD. Magnetic Bacterial Cellulose: A High-Efficiency Adsorbent for Lead Ion Removal from Aqueous Solutions. Pollut Res. 2025. https://doi.org/10.53550/pr.2025.v44i01-02.001

Vaidh S, Surana A, Nagariya V, Rahewar R, Prajapati H, Pandya A, Vishwakarma GS. Amyloid Fibril-Bacterial Cellulose Nanohybrid Membrane Cartridge for Efficient Removal of Heavy Metal from Industrial Wastewater. Water Qual Res J. 2024. https://doi.org/10.2166/wqrj.2024.001

Abd-Elsalam KA, Abdelkhalek TE, Hassan RK, Seth CS. Nanofibers with Functional Properties for Water Purification. 2024. https://doi.org/10.1201/9781003429289-12

Ji K, Liu CK, He H, Mao X, Wei L, Wang H, Zhang M, Shen Y, Sun R, Zhou F. Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers. 2023;15(3):741. https://doi.org/10.3390/polym15030741

Radoor S, Karayil J, Jayakumar AP, Siengchin S. Efficient Removal of Dyes, Heavy Metals And Oil-Water from Wastewater Using Electrospun Nanofiber Membranes: A review. J Water Process Eng. 2024;104983. https://doi.org/10.1016/j.jwpe.2024.104983

Arrosyid BH, Zulfi A, Nurlaini S, Hartati S, Rafryanto AF, Noviyanto A, Hapidin DA, Feriyanto D, Khairurrijal K. High-Efficiency Water Filtration by Electrospun Expanded Polystyrene Waste Nanofibers. ACS Omega. 2023. https://doi.org/10.1021/acsomega.3c01718

Tang Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers. 2022;14(10):1004. https://doi.org/10.3390/polym14102004

Noah NM. Current Status and Advancement of Nanomaterials within Polymeric Membranes for Water Purification. ACS Appl Nano Mater. 2023. https://doi.org/10.1021/acsanm.3c04110

Anukul P, Kongsin K, Apipatpapha T, Boonyarit J, Ounu P, Chollakup R. Coated High-Performance Paper from Bacterial Cellulose Residue and Eucalyptus Pulp: Enhanced Mechanical Strength, Water Resistance, and Air Barrier Properties. Coatings. 2025;15(6):720. https://doi.org/10.3390/coatings150

Mu X, Wu T, Wu X, Zhang H, Ji X, Fan H, Song H. Improvement of Interface Bonding of Bacterial Cellulose Reinforced Aged Paper by Amino-Silanization. Int J Biol Macromol. 2024;133130. https://doi.org/10.1016/j.ijbiomac.2024.133130

Jiang M, Yao J, Guo Q, Yan Y, Tang Y, Yang Y. Recent Advances in Paper Conservation Using Nanocellulose and Its Composites. Molecules. 2025;30(2):417. https://doi.org/10.3390/molecules30020417

Xiang Z, Liu Q, Chen Y, Lu F. Effects of Physical and Chemical Structures of Bacterial Cellulose on Its Enhancement to Paper Physical Properties. Cellulose. 2017. https://doi.org/10.1007/S10570-017-1361-3

Mu X, Wu T, Ji X, Zhang H, Wu X, Fan H. Multifunctional Repair and Long-Term Preservation of Paper Relics by Nano-MgO with Aminosilaned Bacterial Cellulose. Molecules. 2024;29(16):3959. https://doi.org/10.3390/molecules29163959

Tsouko E, Pilaftdis S, Kourmentza K, Gomes HI, Sarris G, Koralli P, Papagiannopoulos A, Pispas S, Sarris D. A Sustainable Bioprocess to Produce Bacterial Cellulose (BC) Using Waste Streams from Wine Distilleries and the Biodiesel Industry: Evaluation of BC for Adsorption of Phenolic Compoun

Provin AP, Cubas ALV, Dutra ARA, Schulte NK. Textile Industry and Environment: Can the Use of Bacterial Cellulose in the Manufacture of Biotextiles Contribute to the Sector? Clean Technol Environ Policy. 2021. https://doi.org/10.1007/S10098-021-02191-Z

Forte A, Dourado F, Mota A, Neto B, Gama M, Ferreira EC. Life Cycle Assessment of Bacterial Cellulose Production. Int J Life Cycle Assess. 2021. https://doi.org/10.1007/S11367-021-01904-2

Aragao JVS, Costa AFS, Silva GL, Silva S, Macedo JS, Junior CJG, Milanez VFA, Sarubbo LA. Analysis of the Environmental Life Cycle of Bacterial Cellulose Production. Chem Eng Trans. 2020;79. https://doi.org/10.3303/CET2079075

Silva FAGS, Schlapp-Hackl I, Nygren N, Heimala S, Leinonen A, Dourado F, Gama M, Hummel M. Upcycling of Cellulosic Textile Waste with Bacterial Cellulose via Ioncell® Technology. Int J Biol Macromol. 2024;132194. https://doi.org/10.1016/j.ijbiomac.2024.132194

Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/FBIOE.2020.605374

Santos MR, Durval IJB, Medeiros ADM, Junior CJGS, Converti A, Costa AFS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods. 2024;13(20):3327. https://doi.org/10.3390/foods13203327

Oz YE, Keskin-Erdogan Z, Safa N, Tuna EEH. A Review of Functionalised Bacterial Cellulose for Targeted Biomedical Fields. J Biomater Appl. 2021. https://doi.org/10.1177/0885328221998033

Gullo M, China SL, Falcone PM, Giudici P. Biotechnological Production of Cellulose by Acetic Acid Bacteria: Current State and Perspectives. Appl Microbiol Biotechnol. 2018. https://doi.org/10.1007/S00253-018-9164-5

Andriani D, Apriyana AY, Karina M. The optimization of Bacterial Cellulose Production and its Applications: a Review. Cellulose. 2020. https://doi.org/10.1007/S10570-020-03273-9

Sousa RBD, Pinesso G, Diedrichs RR, Silva CCD, Macêdo LPR. Bacterial Cellulose: A Multifunctional Platform for Biomedical Applications. J Mater Sci Technol Res. 2024;11(9). https://doi.org/10.31875/2410-4701.2024.11.09

Moreno-Diaz C, Gonzalez-Arranz S, Martinez-Cerezo C. Bacterial Cellulose Production within a Circular Economy Framework: Utilizing Organic Waste. Polymers. 2024;16(19):2735. https://doi.org/10.3390/polym16192735

Infante-Neta AA, D'Almeida AP, Albuquerque TL. Bacterial Cellulose in Food Packaging: A Bibliometric Analysis and Review of Sustainable Innovations and Prospects. Processes. 2024;12(9):1975. https://doi.org/10.3390/pr12091975

Miao W, Gu R, Shi X, Zhang J, Yu L, Xiao H, Li C. Indicative Bacterial Cellulose Films Incorporated with Curcumin-Embedded Pickering Emulsions: Preparation, Antibacterial Performance, and Mechanism. Chem Eng J. 2024;153284. https://doi.org/10.1016/j.cej.2024.153284

Zhang W, Zhang Q, Wang J, Zhang L, Dong Z. Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. Molecules. 2022;27(11):3495. https://doi.org/10.3390/molecules27113495

Isopencu G, Duja DE, Criveanu-Stamatie GD, Mitran R, Stefan A, Romanijan C, Brincoveanu O, Soare RG, Mocanu A. Integrating Bacterial Cellulose in Artisanal Ice Cream: A Farm-To-Fork Sustainable Approach. NPJ Sci Food. 2025. https://doi.org/10.1038/s41538-025-00536-2

Chong MF, Chou J. Enhanced Probiotic Stability and Functional Beverage Potential through Bacterial Cellulose Encapsulation of Saccharomyces boulardii. Chiang Mai J Sci. 2025. https://doi.org/10.12982/cmjs.2025.007

Ullah H, Santos HA, Khan T. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose. 2016. https://doi.org/10.1007/S10570-016-0986-Y

Girard V, Chaussé J, Vermette P. Bacterial Cellulose: A Comprehensive Review. J Appl Polym Sci. 2024. https://doi.org/10.1002/app.55163

Lima N, Fernandes IAA. Bacterial Cellulose in Cosmetic Innovation: A review. Int J Biol Macromol. 2024;133396. https://doi.org/10.1016/j.ijbiomac.2024.133396

Segueni N, Akkal S, Benlabed K, Nieto G. Potential Use of Propolis in Phytocosmetic as Phytotherapeutic Constituent. Molecules. 2022;27(18):5833. https://doi.org/10.3390/molecules27185833

Correa L, Meirelles GC, Balestrin LA, Souza PO, Moreira JCF, Schuh RS, Bidone J, Poser GL, Teixeira HF. In Vitro Protective Effect of Topical Nanoemulgels Containing Brazilian Red Propolis Benzophenones against UV-Induced Skin Damage. Photochem Photobiol Sci. 2020. https://doi.org/10.1039/D

Pham CD, Nguyen KD, Tran ATT, Le NTH, Ho PH, Le H. Bacterial Cellulose-Based Material from Coconut Water as Efficient Green Adsorbent for Heavy Metal Cations. Chem Eng Technol. 2023. https://doi.org/10.1002/ccat.202300033

Mehrotra RAMR, Sharma S, Kaur K. Bacterial Cellulose: An Ecological Alternative as A Biotextile. Biosci Biotechnol Res Asia. 2023. https://doi.org/10.13005/bbra/3101

Nayak R, Cleveland D, Tran G, Joseph F. Potential of Bacterial Cellulose for Sustainable Fashion and Textile Applications: A Review. J Mater Sci. 2024. https://doi.org/10.1007/s10853-024-09577-6

Oz YE, Keskin-Erdogan Z, Safa N, Tuna EEH. A Review of Functionalised Bacterial Cellulose for Targeted Biomedical Fields. J Biomater Appl. 2021. https://doi.org/10.1177/0885328221998033

Downloads

Published

12.12.2025

How to Cite

Wasoh, H., Halim, M., Rahman, N. A., Sobri, Z. M. ., Yusof, M. T. ., Pak-Dek, M. S., & Manaf, Y. N. A. . (2025). Multifunctional Applications of Bacterial Cellulose: Bridging Food, Cosmetic and Environmental Sectors. Journal of Environmental Microbiology and Toxicology, 13(2), 16–23. https://doi.org/10.54987/jemat.v13i2.1148

Issue

Section

Articles