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Many water bodies have been polluted by direct or indirect release of natural or artificial molecules 
which aimed to kill or mitigate any harmful organism. Non target living organisms were also 
affected by these compounds known as pesticides. !ey can cause poisoning in the human body 
through the inhibition of cholinesterase enzyme (ChE) which plays the role in human detoxifying 
process. !e inhibition reaction of cholinesterase is very important in human nervous system 
although they are far more lethal against insects and small animals. Water rehabilitation followed 
by monitoring is the best technique to ensure a safer environment.As the first method, preliminary 
screening of contamination can be carried out using enzymatic biosensor before a high 
performance technology is needed for analytical quantification. ChE-based biomarker was 
considered as an effective method for the monitoring of environmental contamination in 
compound especially pesticides in agriculture. Fish was documented to be very sensitive toward 
toxicants, thus fish is selected as the biomarker along with ChE to indicate the existence of 
toxicant. !is review gives a highlight on the capability of ChE-based biosensor for detecting 
contamination caused by pesticides which can later become one beneficial method for 
bioremediation. 

  esticides can be termed as herbicide, insecticide, 
nematicide, termiticide, molluscicide, piscicide, avicide, 
rodenticide, predacide, bactericide, antimicrobial, 
fungicide, disinfectant, and sanitizer [1]. In pest 
management, pesticides was considered as an effective 
chemical application. There was no doubt that a non-
target organism can also be affected by this compound. 
Organochlorines (OC), Organophosphates (OP), and 
Carbamates (CB) are three group of  chemical families 
which was grouped under insecticides. Utilisation of  
OPs and CBs for pest management in modern 
agriculture was due to their low persistence and high 
insecticidal [2]. Both compound have greater acute 
toxicity, posing risk to people who may be exposed to a 
large quantities and they were also degraded by 
environmental factor rapidly compared to Ocs [3]. OPs, 
which shows a low environmental persistence have come 
into widespread use since 1930s. This compoundposes a 
potential hazard to human health  because of  its high 
acute toxicity. CBs and OPs undergo serine 
carbamylation or phosphorylation at the active site of  
the enzyme [4] which disrupt the process and leads to 
the blocking of  acetylcholine metabolisation. Numerous 

analysis methods have been developed for OPs and CBs 
quantification in contaminated samples that give a 
reliable, precise and high sensitivity results in gas 
chromatography [5], liquid chromatography [6], 
ultraviolet spectroscopy [7], gas-mass spectroscopy [8], 
fluorimetry [9] and surface plasmon resonance (SPR) 
[10]. Chlorpyrifos and fenitrothion are examples of  OP 
that cause ChE inhibition after biotransformation into 
its metabolites [11]. Acetylcholinesterase (AChE) is a fast 
acting enzyme that involved in hydrolysation of  
neurotransmitter, acetylcholine (ACh) located at the 
synaptic cleft. Inhibition of  AChE cause ACh 
accumulat ion whichleads to hyperexcitat ion, 
convulsions, and death [12]. AChE is the target for many 
insecticides, such as OPs and CBs due to its critical 
f u n c t i o n i n t h e n e r v o u s s y s t e m [ 1 3 ] . 
Butyrylcholinesterase (BChE), in the absence of  AChE 
helps in regulating cholinergic transmission by the 
scavenging process of  OP and CB inhibitors comes 
from esteratic activity of  BChE. Excess substrate will 
inhibit AChE while BChE exhibits the substrate 
activation in excess substrate which distinguishes AChE 
from BchE [14]. Thus, this review focuses more on how 
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cholinesterase can become one of  the potential 
biosensor that is sensitive to toxicants, discuss more on 
pesticides. !
Acetylcholinesterase (AChE) 
AChE (E.C. 3.1.1.7) is the key enzyme in the nervous 
system of  animals. It can be found in various part of  the 
body, notably in neuromuscular junction and brain tissue 
[15]. Majority of  acetylcholinesterase can be found in 
the brain muscle [16]. Other than nerve tissue, AChE 
also present in liver, red blood cells and muscles with the 
same or different morphology. It exists in the form of  
disulfide-linked oligomers mixed with collagen or lipid-
containing protein subunits [17]. AChE is a tetrameric 
molecule, globular, and it also exhibit identical solubility 
or amphiphilic molecular forms. The examples of  AChE 
in molecular form are amphiphilic dimers, hypophobic-
tailed tetramers and collagen-like tailed forms [18]. It is 
an ammonium containing compound and was the first 
neurotransmitter to be isolated in 1920 [19]. The three 
dimensional structure of  AChE was first determined 
using the protein from Torpedo californica [20].The 
main function of  AChE is to terminate synaptic signal 
that was sent in the form of  ACh. AChE active site is 
located at the bottom of  a deep gorge which largely 
lined by aromatic residues. AChE active centre has two 
functional sub sites called esteratic and anionic site [21]. 
AChE in addition, consists of  one or more binding site 
known as peripheral binding site for ACh and other 
ligand located near the entrance of  active site gorge [21, 
22] (Figure 1). The esteric site is where the choline being 
displaced by esterification of  carboxyl group of  ACh 
and hydroxyl group of  serine occurred. It consists of  
three amino acid residues which are serine, histidine and 
glutamic acid and they are located at the bottom of  
active site gorge [21]. On the wall of  the active site 
gorge, aromatic amino acid residues embedded in 
anionic site. Dipole-dipole interaction between the 
electrons of  aromatic rings and the quartenary nitrogen 
of  ACh induced the substrate recognition. A rapid 
translation of  substrate from the surface to the active 
site can be achieved by an ‘aromatic guidance’ provided 
by the aromatic acid residues [23].  Peripheral anionic 
site influence the rates of  catalysis due to its 
conformational changes suggested by Bourne et al., [22]. 
The binding of  any ligand at peripheral anionic site will 
blocked the entry of  substrates and the exit of  products 
from the active site which caused substrate inhibition 
[21]. ACh consists of  two units, choline and acetic acid 
that are connected by ester linkage. It acts as a nerve 
impulse transmitter and was packaged in a vesicle called 
vesicular acetylcholine transporter (vAChT). Action 
potential will trigger the movement of  vAChT and ACh 
will be released in the synaptic cleft. The binding of  
ACh to muscarinic receptors situated on the membrane 
of  pre-synaptic and post synaptic neuron causes the 
opening of  ion channel and trigger a respond as the 

movement of  ion into synaptic membrane is allowed, 
followed by depolarisation of  the membrane [24]. The 
arrival of  nerve impulses depolarises the presynaptic 
membrane at the synaptic knob, opening calcium 
channels and increases the permeability of  the 
membrane to calcium (Ca2+) ions [25]. Ca2+ rushes 
into the synaptic knob, causing the synaptic vesicles to 
fuse with the presynaptic membrane and release their 
content into the synaptic cleft (Figure 1). ACh diffuses 
across the synaptic cleft which later creates a delay about 
a fraction of  milliseconds, and attach to a specific 
protein on the postsynaptic membrane that recognises 
the acetylcholine molecular structure. There will be a 
change in the shape of  receptor site, which results in the 
opening of  ion channels in the postsynaptic membrane 
due the arrival of  the ACh [26]. AChE then hydrolyses 
ACh into acetic acid and choline and terminates the 
response because ACh does not bind with the 
muscarinic receptor anymore. The recycle of  choline 
will occur for synthesising a new ACh in presynaptic 
neuron. AChE differs from BChE by means of  inhibitor 
reactivity, substrate specificity, kinetic properties and 
distribution in tissue [27, 28]. AChE is enzymes which 
preferentially hydrolyse acetyl esters such as ACh or 
acetyl-β-methylcholine, while butyrylcholinesterases 
(BChE) are those which demonstrate a preference for 
other types of  esters such as butyrylcholine or 
propionylcholine [29]. Due to its sensitivity towards the 
OP and CB groups, AChE has been manipulated to be 
used in biomonitoring and bioassay for those 
contaminants and has been recently used in various 
species of  fish [30-32]. AChE activity in invertebrates 
such as shellfish [33, 34] and crustaceans [35] has been 
proved to be useful in biomonitoring programme. It has 
been discovered that AChE from Pangasius pangasius is 
useful on detecting heavy metals and its sensitivity 
towards heavy metals such as copper, silver and 
chromium [36]. 

Figure 1: Schematic representation of the binding sites of AChE. ES, 
esteratic site; AS, anionic substrate binding site; ACS, aromatic cation 
binding site; PAS, peripheral anionic binding site. Putative hydrophobic 
binding regions are represented by the hatched areas. The esteratic and 
anionic sites of the catalytic centre were spanned by ACh. (Adapted from 
Dvir et al., 2010 [21])!
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Butyrylcholinesterase (BChE) 
Pseudocholinesterase or Butyrylcholinesterase (BChE; 
E.C. 3.1.1.8) is one of  the serine hydrolase that primarily 
targets butyrylcholine (BCh) [28, 39]. The presence of  
BChE is important in the regulation of  the cholinergic 
system [40-42]. BChE is a non- specific cholinesterase 
mainly found in blood plasma and is similar to AChE. 
BchE was known to be synthesised in liver and 
distributed in liver, intestine, heart, kidney and lung [42]. 
BChE contains peripheral anionic site, omega loop, 
choline binding site, oxyanion hole, catalytic triad of  
esteratic site, and acyl binding site (Figure 3). The 
monomer of  BChE consists of  approximately 574 
amino acids and is 20Å deep [43]. Peripheral anionic site 
of  BChE is made up of  Asp70 and Tyr332 residues that 
involved in the binding of  positively charged substrate 
molecules with the Tyr332 residue during the initial 
state. The Asp70 residue helps to induce the 
conformation alteration of  the substrate’s monomer 
which is being carried to the choline binding site 
through the alteration of  the arms of  omega loop. Acyl 
binding site helps to stabilise the substrate and facilitate 
the hydroxylation process through binding with the acyl 
group of  the substrate. Inhibition of  BChE by the 
phosphorylation of  Ser198 was caused by OP or CB. 
BChE catalyses the hydrolysis of  acetylcholine 
efficiently and it can compensate the lacking of  AChE 
to allow the continuation regulation of  cholinergic 
neurotransmission [44-46]. BChE detoxifies those 
inhibitors and act as endogenous scavengers before 
these chemicals reach acetylcholinesterase at 
physiologically relevant target sites [14]. Studies proved 
that BChE can act as detoxification enzyme against 
anticholinesterase agents, such as OP pesticides [14]. 
Rodriguez-Fuentes et al., [47] observed that BChE 

contributed 37% of  the total ChE activities in the 
muscle of  flat fish, but no data was available when 
considering the BChE activity in invertebrates. In vivo 
and in vitro biomarker of  pesticides can be made using 
BChE. The exposure of  living specimens toward the 
analysed substance for a period of  time has been 
indicated, as in vivo approach followed by tissue sample 
analysis through the dissection on specimen, while in 
vitro approach makes use of  the extracted tissues from 
the specimen and directly exposes them with the 
analysed substance [48]. A decrease in BChE activity in 
aquatic organisms followed by the assay on the analysed 
tissues is capable of  indicating the presence of  
contaminant in the aquatic environment. Thus, the 
pollution level of  aquatic environment can be 
determined [48, 49]. The use of  in vitro assay for the 
detection of  insecticides was normally done using AChE 
but BChE have also been proved by in several studies as 
shown in Table 1. 

Figure 2: Signal transmission at the neuromuscular junction (Adapted from Bargmann [37]).!

Figure 3: A schematic representation of the BChE active site.The figure 
shows the catalytic triad (S198, H438, and E325) and residues, which 
figured prominently in the mutants which retained OP hydrolase activity. 



Mini-Review                                     

Nanobio Bionano 2014 (1) 17-2520

!
Organophosphates (OPs) 
OPs are phosphoric or phosphonic acid derivatives. 
They are also irreversible inhibitors targeted on 
cholinesterase activities [54]. According to Gallo and 
Lawryk [55], not all OP have the anticholinesterase 
effect. It is the first potent synthetic AChE inhibitors 
that has introduced a new era in both chemical weapon 
and pesticide management and are widely used currently 
[56]. OPs are mostly polar, water-soluble chemicals and 
composed of  a few lipophilic compounds. OPs usually 
being absorbed rapidly through the inhalation or 
ingestion but dermal absorption of  OP are slower. 
Prolonged exposure to OP can cause severe poisoning 
because it can accumulate in fat, liver, kidneys and 
salivary glands. There are two groups of  OPs, which are 
phosphorothioates (P=S), such as diazinone and 
parathion, and phosphates (P-O), such as dichlorvos. 
Phosphates are already biologically active, while 
phosphorothiates need to be activated to their oxon. 
Enzyme in the liver, known as cytochrome P450 
monooxygenase activate the phosphorothiates naturally. 
Carboxylesterase and A-esterases such as paraoxonase 
can deactivate the activated OP that inhibits AChE [48]. 
Some OP such as dichlorvos may not be as persistent as 
the others depending on their lypophilicity. In fat, 
dichlorvos was stored briefly and can be easily 
eliminated in a few hours. However, because of  their 
extensive storage in fat, the oxon of  chloropyriphos may 
stay in the body for days [57]. AChE reaction can be 
inhibited by OP through serine residue at the active site 
of  the enzyme which can cause an irreversible inhibition 
[58]. OP inhibits cholinesterase by phosphorylating 
cholinesterase to form a highly stable phosphorylated 
enzyme. OPs first binding with the catalytic serine of  
AChE as a trigonal bipyramidal intermediate. The 
administration of  oximes can reverse the initial structure 

in some circumstances but it may persist for a period of  
days [59]. The active site of  histidine being forced into 
a position unsuitable for catalysis. Steric exclusion then 
occurs and this explained the slow hydrolysis of  the 

initial organophosphate complex to the aged form [60] 
(Figure 4). ACh accumulated in synapse which avoids 
the normal nerve impulse transmission because of  the 
absence of  functional AChE and leads to the loss of  
muscular coordination, seizure, and death.  The 
discharge of  OP pesticides into aquatic system may 
affects to the non-target organisms [61] and give threat 
to the entire ecosystem including food web due to 
bioconcentration to such non-target organisms [62, 63]. 
After the inhibition by OP, the reactivation of  AChE 
become slow and was considered irreversible.  Therefore 
new enzyme synthesis is crucial for recovery [35, 61]. 
Thus, ChE is an effective biochemical indicator of  toxic 
stress and serves as sensitive parameter for testing water 
quality for the presence of  various toxicants affecting its 
activity [64-66]. Environmental contamination can be 
monitored by OP poisoning that is utilised by the same 
principle of  irreversible inhibition of  AChE. !
Carbamates (CBs) 
CBs are carbamic acid derivatives that are widely used in 
household applications and agricultural field which 
capable to inhibit the cholinesterase activities and cause 
an excessive accumulation of  ACh, leading to 
neurological dysfunction [68]. Neuromuscular paralysis 
was caused by the excessive accumulation of  ACh in the 
synaptic cleft which was affected by the overstimulation 
of  specific signalling process [69]. The general formula 
of  the carbamates is: 

where  and  are alkyl or aryl groups. Carbamates are said 
to be an effective insecticides because of  their ability to 
inhibit AChE in the nervous system. They can also 
inhibit other esterases. They can inhibit serine-esterases 

Species IC50 Source Reference

Alburnus alburnus 1.39

Serum [49]

Leuciscus idus 0.35

Abramis ballerus 0.18

Abramis brama 0.22

Rutilus rutilus 0.35

Blicca bjoerkna 0.18

Limanda yokohamae 88.23 Muscle [50]

Ictalurus !
 furcatus

10 Liver
[51]

1.610 Muscle

Gasterosteus!
 aculeatus

0.1 Liver

[52]0.1 Muscle

0.1 Gills

Table 1: Pesticide IC50 for in vitro cholinesterase in previous studies 
(Assis et al., 2012 [48])!

Figure 4: Schematic overview of cholinesterase inhibition by OPs. (1) 
Formation of Michaelis complex, (2) Phosphorylation of cholinesterase 
enzyme occurs, (3) Reactivation reaction followed. (4) “Aging” enzyme 
formed (Adapted from WHO, 1986 [67]).!
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or beta-esterases which have serine in their catalytic 
centre. The unstable carbamylation of  the enzyme and 
the rapid regeneration of  AChE compared with that 
from a phosphorylated enzyme make CB are less 
dangerous with regard to human exposure than OP. 
Carbamylation can cause the inhibition of  CB which is 
similar to phosphorylation of  OP [70]. The esteratic site 
of  AChE will be esterified by CB and hindered by the 
binding of  substrate to AChE which caused a reversible 
inhibition. AChE became unstable as the result of  
carbamylation process and generated into its active form 
rapidly [24]. CBs undergo serine carbamylation at the 
active site of  the enzyme and block the metabolisation 
of  acetylcholine [71]. AChE inhibited after an enzyme-
inhibitor complex was formed with subsequent 
carbamylation of  the serine hydroxyl. It can exhibit its 
reversible effects as insecticide and cause intoxication by 
targeting cholinesterase [70]. The examples of  CB are 
bendiocarb, carbaryl and carbofuran [72]. CBs are 
relatively toxic to mammals because they give adverse 
effect to AChE [73].  !
Biomarkers 
In order to monitor the effects of  contaminants, 
inhibitive ChE-based assay has been used for years on 
either human or wild life as a multiple detection marker 
of  toxicant exposure.  A vast number of  deleterious 
xenobiotics including heavy metals, pesticides, industrial 
chemicals, and  pathogens, that bioaccumulate in marine 
organisms, may cause toxicity to fish, handlers and 
eventually mankind as the ultimate consumer [74-76]. In 
order to monitor environmental contamination, stress 
indicators at cellular and tissue levels have been 
developed in fish and other aquatic organisms in the 
recent past [77-79]. The investigation of  cholinesterase 
or AChE activity in fish tissues as early-warning 
biomarker was made recently for the assessment of  
pollution in ponds or lakes which receive sewage 
wastewater revealed site and tissue-specific variations in 
AChE responses. Biochemical changes occur more 
quickly than physiological responses and provide 
information on the sensitivity of  organisms with regard 
to uptake, biotransformation, and detoxification patterns 
[80]. Toxicological effects of  OP and CB can be 
measured by referring to the half  maximal inhibitory 
which indicates the amount of  concentration that can 
inhibit the biochemical or biological function by half  
after exposing the enzyme to certain series of  inhibitors 
with different concentrations. This method is usually 
used for the detection at lower contamination levels for 
in vivo and in vitro effect of  pesticides. Rehabilitation 
can be applied when there is a warning signal given by a 
biomarker test. Replicates of  the sample that shows a 
high inhibition when tested using a biomarker will be 
chosen for validation and quantification by using a high 
performance technologies. However, sample which 
shows low or no inhibition will be tested again from the 

start. This step will give an early warning signal when the 
result is positive. Following the secondary screening, 
with the use of  advance or high performance 
technologies, rehabilitation can takes place when the 
result is near or exceeds the maximum residue limit 
where the removal process of  pollutions and 
contaminants from environmental media takes place 
such as environmental clean-up, groundwater 
remediation, land remediation, and brownfield site 
preparation (Figure 6). Moulton et al . , [81] 
recommended a 30%  decrease in AChE activity which 
is significant to  indicate the over exposure of  
freshwater mussels to OP. Coppage et al., [82] 
documented that the inhibition of  brain AChE in the 
range of  70-80% is critical to fishes. 20% or greater 
depression in AChE activity in birds, fish or 
invertebrateshas been generally accepted to indicate 
exposure to organophosphate insecticides, according to 
Day and Scott [83]. In most species of  fish, Fulton and 
Key 

Figure 6. Schematic diagram of biomarker stages. Preliminary screening 
of the sample was done by exposing the sample to a high and low 
inhibition level. !

Advantages Disadvantages

Economical Timing is critical

Precision of measurement Expensive (cost of analyse)

Less biased than questionnaires Storage (Longevity of sample)

Gives a rapid warning signal Laboratory errors

Table 2. Advantages and disadvantages of biomarkers (Adapted from 
NeuroRx Article [84])!
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Key [61] suggested that brain AChE inhibition of  >70% 
levels are associated with mortality. However, selected 
species appeared to possess the capability to tolerate 
much higher levels (>90%) of  brain inhibition. 
However, these effects were observed only when brain 
AChE inhibition is at near-lethal levels, as being 
suggested by most studies. Biomarkers offer distinct and 
obvious advantages. It can allow an integrated 
measurement of  bioavailable contaminants causing 
biochemical responses. Thus, it provides early indicators 
of  potentia l pol lut ion. The advantages and 
disadvantages of  biomarkers are being discussed as in 
Table 2. 

Conclusion 
The study on the exposure of  pesticides and its effect 
on cholinesterase enzyme activity provides a biomarker 
that is sensitive for the detection of  toxicants  and could 
become one of  the method to eliminate pesticides 
pollution which gave a great deal of  threats to our water 
bodies. This method improves the understanding of  the 
adverse effect caused by the toxicants in contaminated 
water bodies that are polluted by pesticides. Thus, this 
method can be used as a preliminary screening to 
remove any possible pollutants came from sewage, 
fertiliser, and industrial waste for biomonitoring 
programme that give promising results. !
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