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  rowth curves are found in a wide range of 
disciplines, such as fishery research, crop science, and 
biology. Most living matter grows with successive lag, 
growth, and asymptotic phases; examples of quantities 
that follow such growth curves are the length or mass of 
a human, a potato, or a fish and the extent of a 
population of fish or microorganisms. One of the most 
important results from curve fitting in growth curve 
model is the ability to use a growth model that have a 
strong underlying mechanistic function based on sound 
theoretical knowledge of the system (2,3). One of the 
best of such model is the Michaelis-Menten kinetics that 
models the effect substrate on the initial enzyme activity 
of the enzyme, substrate composition, temperature, light, 
pH, and genetic. 

Monitoring bacterial growth has been traditionally 
carried out using plate count agar or through counting on 
a haemocytometer. These methods are time consuming, 
require trained personnel and cannot be carried out in 

real-time. Due to this, several biosensor-based methods 
have been develop to overcome these hurdles including 
impedemetric biosensor. Impedance spectroscopy 
utilizes electrical properties of materials and their 
interfaces with electronically conducting electrodes. It is 
a relatively novel and powerful method (1,4,5). The use 
of this method by Kim et al. (1) for monitoring bacterial 
growth has been explored and showed promising results. 
The resultant bacterial growth showed a unique 
sigmoidal characteristics of bacterial growth including a 
lag time (λ) followed by an acceleration to a maximal 
value (μmax) or exponential phase culminating in a final 
phase in which the rate decreases and finally reaches 
zero, so that an asymptote (A) is reached (6).  
The sigmoidal curve can be fitted by different 
mathematical functions, such as the Logistic (6,7), 
Gompertz (6,8), Richards (6,9), Schnute (6,10), Baranyi-
Roberts (2) and Von Bertalanffy (11), Buchanan three-
phase (12) and more recently Huang models (13).  
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The development of in situ sensor for measuring bacterial concentrations in fermenter would 
allow real-time monitoring of the concentration of bacteria. Kim et al [1] has developed such a 
method using impedance spectroscopy, and was able to measure in real-time the concentration of 
E. coli at 0.01 MHz frequency using impedance changes. In this work we used several
mathematical models of bacterial growth kinetics such as logistic, Gompertz, Richards, Schnute, 
Baranyi-Roberts, Von Bertalanffy, Buchanan three-phase and the Huang models to model the
resulting bacterial growth curve from Kim et al. The Buchanan three-phase model was chosen as
the best model based on statistical tests such as root-mean-square error (RMSE), adjusted
coefficient of determination (R2), bias factor (BF), accuracy factor (AF) and corrected AICc
(Akaike Information Criterion). Parameters obtained from the growth fitting exercise were
maximum specific growth rate (μmax), lag time (λ) and maximal number of cells achieved per 
droplet (Ymax) with values of 0.67±0.086 (h-1), 2.45±0.24 (h) and 20.26±0.038 (ln cell no/ml), 
respectively. The parameters obtained from fitting the bacterial growth curve using this model can 
be used for further modeling and optimization exercises for identifying key optimal parameters 
for improving the sensitivity of the biosensor. 
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A = bacterial lower asymptote;
μmax = maximum specific growth rate;
v = affects near which asymptote maximum growth occurs.
λ = lag time
ymax = bacterial upper asymptote;
t = sampling time

a,b, k = curve fitting parameters
h0  =  a  dimensionless  parameter  quantifying  the  initial 
physiological state of the cells. The lag time (day-1) can be 
calculated as h0 = μmax

Open Access

Model No. of 
parameter

Equations

Modified 
Logistic

3

Modified 
Gompertz

3

Modified 
Richards 4

Modified 
Schnute

4

Baranyi-
Roberts

4

Von 
Bertalanffy 3

Huang 4

Buchanan 
Three-phase 
linear model

3
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y = A  , if x < lag  
y = A+ k(x −λ) , if λ ≤ x ≥ xmax
y = ymax , if x ≥ xmax
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Table 1. Growth models used in this study
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Materials and Methods 

Acquisition of Data 
In order to process the data, the E. coli growth curve 
from Figure 8 from Kim et al (1) was scanned and 
electronically processed using WebPlotDigitizer 2.5 
(Rohatgi, 2014)  which helps to digitize scanned plots 
into table of data with good enough precision (De 
Stefano et al., 2014; Kivlin et al., 2013). Data were then 
replotted (Fig. 1). 

Fitting of the data 
Growth data will be fitted nonlinearly using nonlinear 
regression software (CurveExpert Professional software, 
Version 1.6). The method uses the Marquardt algorithm 
which minimizes the sums of square of residuals between 
the predicted and experimental values. The program can 
be used in the manual mode through manual input of 
values or automatic mode where it calculates starting 
values by searching for the steepest ascent of the curve. 
This is normally done using four datum points to 
estimate the μmax. The intersection of this line with the x 
axis is the estimation value of the lag time or λ while the 
final datum point is the estimation of the asymptote (A). 
The Huang’s model needs to be solved numerically as it 
is a differential equation. The differential equation was 
solved numerically using the Runge-Kutta method. A 
differential equation solver (ode45) in MATLAB 
(Version 7.10.0499, The MathWorks, Inc., Natick, MA) 
was used to solve this equation. 

Statistical analysis 
To decide whether there is a statistically substantial 
difference between models with different number of 
parameters, in terms of the quality of fit to the same 
experimental data was statistically assessed through 
various methods such as the root-mean-square error 
(RMSE), adjusted coefficient of determination (R2), bias 
factor (BF), accuracy factor (AF) and corrected AICc 
(Akaike Information Criterion). 

The RMSE was calculated according to Eq. (1), where 
Pdi are the values predicted by the model and Obi are the 
experimental  data, n is the number of experimental data, 
and p is the number of parameters of the assessed model. 
It is expected that the model with the smaller number of 
parameters will give a smaller RMSE values (14).  

(1)            

(2) 

           (3) 

In linear regression models the coefficient of 
determination or R2 is used to assess the quality of fit of a 
model. However, in nonlinear regression where 
difference in the number of parameters between one 
model to another is normal, the adoption of the method 
does not readily provides comparable analysis. Hence an 
adjusted R2 (Eq. 2 and 3) is used to calculate the quality 
of nonlinear models according to the formula where 
RMS is Residual Mean Square andis the total variance of 
the y-variable (14).  

The Akaike information criterion (AIC) provides a means 
for model selection through measuring the relative 
quality of a given statistical model for a given set of 
experimental data (15). AIC handles the trade-off relating 
to the goodness of fit of the model as well as the 
complexity of the model. It is actually established on 
information theory. The method provides a relative 
approximation of the information lost for each time a 
given model is utilized to represent the process that 
creates the information or data. For an output of a set of 
predicted model, the most preferred model would be the 
model showing the minimum value for AIC. This value is 
often a negative value, with for example; an AICc value 
of -10 is more preferred than the one with -1.

Figure  1.  Growth  curve  of  E.  coli  as  measured  using  impedance 
spectroscopy (Replotted from Kim et al).
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The equation incorporates number of parameters penalty, 
the more the parameters, the less preferred the output or 
the higher the AIC value. Hence, AIC not merely rewards 
goodness of fit, but in addition does not encourage using 
more complicated model (overfitting) for fitting 
experimental data. Since the data in this work is small 
compared to the number of parameter used a corrected 
version of AIC, the Akaike information criterion (AIC) 
with correction or AICc is used instead (16). The AICc is 
calculated for each data set for each model according to 
the following equation (Eq. 4); 

                    (4) 

Where n is the number of data points and p is the number 
of parameters of the model. The method takes into 
account the change in goodness-of-fit and the difference 
in number of parameters between two models. For each 
data set, the model with the smallest AICc value is highly 
likely correct (16,17). 

Accuracy Factor (AF) (Eq. 5) and Bias Factor (BF) (Eq. 
6) to test for the goodness-of-fit of the models as
suggested by Ross (18) were also used.  The Bias Factor 
equal to 1 indicate a perfect match between predicted and 
observed values. For microbial growth curves or 
degradation studies, a bias factor with values < 1 
indicates a fail-dangerous model while a bias factor with 
values > 1indicates a fail-safe model. The Accuracy 
Factor is always ≥ 1, and higher AF values indicate less 
precise prediction. 

    (5) 

   (6) 

Results and Discussions 

Eight different growth models (Table 1) were used in this 
study to match the experimental data. The resultant 
fitting shows visually acceptable fitting (Fig. 2). Of the 
eight only Modified Gompertz, Huang, Baranyi-Roberts 
and Buchanan three-phase models (Figs. 2-5) could 
model the E. coli growth curve.  

Open Access
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Figure 2. Growth curve of E. coli fitted with Gompertz (A), Huang 
(B),  Baranyi-Roberts  (C),  and  Buchanan three-phase  growth  model 
(D). The number of cells/ml was transformed into natural logarithm.
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The results indicate that all of the models used could fit 
the growth curves. The modified Gompertz model was 
chosen as the best model based on the lowest AICc and 
highest adjusted R2 values (Table 2). Parameters 
obtained from the growth fitting exercise were maximum 
specific growth rate (μmax), lag time (λ) and maximal 
number of cells achieved per droplet (Ymax) with values 
of 0.67±0.086 (h-1), 2.45±0.24 (h) and 20.26±0.038 (Ln 
cell no/ml), respectively.A close contender is the four-
parameter Baranyi-Roberts model. The Gompertz model 
is a three-parameter one, whereas the Huang and 
Baranyi-Roberts model are four-parameter models. 
Three-parameter model is more stable and is simpler and 
easier to use and the parameters are less correlated 
(6,17). In addition, a three-parameter model has more 
degrees of freedom for the parameter estimates. 
Furthermore, all three parameters can be given a 
biological meaning. In contrast, the fourth parameter in 
the four-parameter model is a shape parameter and is 
usually difficult to assign any biological and physical 
meanings (6,17,19). This means that the Gompertz model 
should be more appropriate than the other models in 
describing the growth kinetics of this bacterium. 

Conclusion 
In conclusion, several of the sigmoidal functions 
evaluated can be used to model E. coli growth rate from 
an impidemetric biosensor set-up with the best model is 
the modified Gompertz with an acceptable degree of 
goodness- of-fit. The parameters obtained from the 
growth curve using this model can be used for further 
modeling and optimization exercises for identifying key 
controlling parameters of the biosensing device. 

Acknowledgement 
This project was supported by a grant from Snoc 
International Sdn Bhd. 

References 
1. Kim YH, Park JS, Jung HI. An impedimetric biosensor for

real-time monitoring of  bacterial growth in a microbial
fermentor. Sensor Actuat B-Chem. 2009; 138(1):270–277.

2. Baranyi J. Mathematics of  predictive food microbiology. Int J
Food Microbiol. 1995; 26(2); 199–218.

3. Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Evaluation
of  several mathematical models for fitting the growth of  the
algae Dunaliella tertiolecta. Asian J Plant Biol. 2014; 2(1):1–6.

4. Dweik M, Stringer RC, Dastider SG, Wu Y, Almasri M,
Barizuddin S. Specific and targeted detection of  viable
Escherichia coli O157:H7 using a sensitive and reusable
impedance biosensor with dose and time response studies.
Talanta. 2012; 94:84–89.

5. Ward AC, Connolly P, Tucker NP. Pseudomonas
aeruginosacan be detected in a polymicrobial competition
model using impedance spectroscopy with a novel biosensor.
PLoS ONE. 2014; 9(3):e91732.

6. Zwietering MH, Wit JCD, Cuppers HGAM, Riet KV.
Modeling of  bacterial growth with shifts in temperature. Appl
Environ Microb. 1994; 60(1):204–213.

7. Gompertz B. On the nature of  the function expressive of  the
law of  human mortality, and on a new mode of  determining
the value of  life contingencies. Philos Trans R Soc London.
1825; 115:513–85.

8. Richards FJ. A flexible growth function for empirical use. J
Exp Bot. 1959; 10:290–300.

Table 2. Statistical analysis of the various fitting models.

Open Access

p no of paramaters
SSE Sums of Square Error
MSE Mean Square Error
RMSE Root Mean Square Error
AICc Corrected Akaike Information Criterion
Ra2 Adjusted coefficient of determination
BF Bias factor
AF Accuracy factor

Model p SSE MSE RMSE AICc Ra2 BF AF

Modified Gompertz 3 0.0784 0.0060 0.0777 0.986 -67.46 1.0000 1.0032

Huang 4 0.0840 0.0070 0.0837 0.983 -59.98 1.0000 1.0034

Baranyi-Roberts 4 0.0715 0.0060 0.0772 0.986 -62.58 0.9999 1.0028

Buchanan 3 0.0812 0.0062 0.0790 0.985 -66.90 1.0001 1.0030



Communication

57 Nanobio Bionano 2014 (2) 52-57

9. Schnute J. A versatile growth model with statistically stable
parameters. Can J Fish Aquat Sci. 1981; 38:1128–1140.

10. Bertalanffy LV. 1951. Heoretische Biologie, Zweiter Band:
Stoffwechsel, Wachstum. Ed: Francke A & Verlag AG, Bern,
Switzerland; p. 418.

11. Buchanan RL, Golden MH. Model for the non-thermal
inactivation of  Listeria monocytogenes in a reduced oxygen
environment. Food Microbiol. 1995; 12:203–212.

12. Huang L. Optimization of  a new mathematical model for
bacterial growth. Food Control. 2013; 32:283–288.

13. Snedecor GW, Cochran WG. 1980. Statistical methods. 7th ed.
Ames Iowa: Iowa State University Press.

14. Akaike H. New look at the statistical model identification.
IEEE Trans Automat Contr. 1974; 19:716–23.

15. Burnham KP, Anderson DR. Model Selection and
Multimodel Inference: A Practical Information-Theoretic
Approach. Springer Science & Business Media; 2002. 528.

16. Motulsky HJ, Ransnas LA. Fitting curves to data using
nonlinear regression: a practical and nonmathematical review.
FASEB J Off  Publ Fed Am Soc Exp Biol. 1987; 1:365–374.

17. McMeekin TA, Ross T. Predictive microbiology: Providing a
knowledge-based framework for change management. Int J
Food Microbiol. 2002; 78:133–153.

18. López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical
evaluation of  mathematical models for microbial growth. Int J
Food Microbiol. 2004; 96:289–300.


