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The development of in situ sensor for measuring bacterial concentrations in fermenter would
allow real-time monitoring of the concentration of bacteria. Kim et al [1] has developed such a
method using impedance spectroscopy, and was able to measure in real-time the concentration of
E. coli at 0.01 MHz frequency using impedance changes. In this work we used several
mathematical models of bacterial growth kinetics such as logistic, Gompertz, Richards, Schnute,
Baranyi-Roberts, Von Bertalanfly, Buchanan three-phase and the Huang models to model the
resulting bacterial growth curve from Kim et al. The Buchanan three-phase model was chosen as
the best model based on statistical tests such as root-mean-square error (RMSE), adjusted
coeflicient of determination (R2), bias factor (BF), accuracy factor (AF) and corrected AICc

History

Received: Dec, 2014
Revised: Dec, 2014
Accepted: Dec, 2014
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Impedance maximum specific growth rate (Uma), lag time (A) and maximal number of cells achieved per
E. coli droplet (Yma) with values of 0.67+0.086 (h-1), 2.45+0.24 (h) and 20.26+0.038 (In cell no/ml),
Gompertz respectively. The parameters obtained from fitting the bacterial growth curve using this model can
ggf;’;ﬁi’i three-phase e ysed for further modeling and optimization exercises for identifying key optimal parameters

for improving the sensitivity of the biosensor.

Growth curves are found in a wide range of
disciplines, such as fishery research, crop science, and
biology. Most living matter grows with successive lag,
growth, and asymptotic phases; examples of quantities
that follow such growth curves are the length or mass of
a human, a potato, or a fish and the extent of a
population of fish or microorganisms. One of the most
important results from curve fitting in growth curve
model is the ability to use a growth model that have a
strong underlying mechanistic function based on sound
theoretical knowledge of the system (2,3). One of the
best of such model is the Michaelis-Menten kinetics that
models the effect substrate on the initial enzyme activity
of the enzyme, substrate composition, temperature, light,
pH, and genetic.

Monitoring bacterial growth has been traditionally
carried out using plate count agar or through counting on
a haemocytometer. These methods are time consuming,
require trained personnel and cannot be carried out in
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real-time. Due to this, several biosensor-based methods
have been develop to overcome these hurdles including
impedemetric biosensor. Impedance spectroscopy
utilizes electrical properties of materials and their
interfaces with electronically conducting electrodes. It is
a relatively novel and powerful method (1,4,5). The use
of this method by Kim et al. (1) for monitoring bacterial
growth has been explored and showed promising results.
The resultant bacterial growth showed a unique
sigmoidal characteristics of bacterial growth including a
lag time () followed by an acceleration to a maximal
value (Umax) or exponential phase culminating in a final
phase in which the rate decreases and finally reaches
zero, so that an asymptote (A) is reached (6).

The sigmoidal curve can be fitted by different
mathematical functions, such as the Logistic (6,7),
Gompertz (6,8), Richards (6,9), Schnute (6,10), Baranyi-
Roberts (2) and Von Bertalanffy (11), Buchanan three-
phase (12) and more recently Huang models (13).
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Table 1. Growth models used in this study

Model No. of Equations
parameter
A
Modified 3 y= 4u
Logistic l+exp|——"(A-t)+2
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Gompertz A
il
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v
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y=A+y_ - ln(eA + (eym‘“ —e’ )e‘”‘"“B(x))
Huang 4 1 1+ e—(z(x—/l)

a l+e

Buchanan yoal s lag
Three-phase 3 y=A+k(x-2), if Asxzx,,
linear model V=Y, If X=X
A = bacterial lower asymptote; a,b, k = curve fitting parameters
Mmax= maximum specific growth rate; ho = a dimensionless parameter quantifying the initial
v = affects near which asymptote maximum growth occurs. physiological state of the cells. The lag time (day-') can be
A =lag time calculated as ho= Umax

Ymax = bacterial upper asymptote;
t = sampling time
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Materials and Methods

Acquisition of Data

In order to process the data, the E. coli growth curve
from Figure 8 from Kim et al (1) was scanned and
electronically processed using WebPlotDigitizer 2.5
(Rohatgi, 2014) which helps to digitize scanned plots
into table of data with good enough precision (De
Stefano et al., 2014; Kivlin et al., 2013). Data were then
replotted (Fig. 1).

Fitting of the data

Growth data will be fitted nonlinearly using nonlinear
regression software (CurveExpert Professional software,
Version 1.6). The method uses the Marquardt algorithm
which minimizes the sums of square of residuals between
the predicted and experimental values. The program can
be used in the manual mode through manual input of
values or automatic mode where it calculates starting
values by searching for the steepest ascent of the curve.
This is normally done using four datum points to
estimate the lmax. The intersection of this line with the x
axis is the estimation value of the lag time or A while the
final datum point is the estimation of the asymptote (A).
The Huang’s model needs to be solved numerically as it
is a differential equation. The differential equation was
solved numerically using the Runge-Kutta method. A
differential equation solver (ode45) in MATLAB
(Version 7.10.0499, The MathWorks, Inc., Natick, MA)
was used to solve this equation.

Statistical analysis

To decide whether there is a statistically substantial
difference between models with different number of
parameters, in terms of the quality of fit to the same
experimental data was statistically assessed through
various methods such as the root-mean-square error
(RMSE), adjusted coefficient of determination (R2), bias
factor (BF), accuracy factor (AF) and corrected AICc
(Akaike Information Criterion).

The RMSE was calculated according to Eq. (1), where
Pdi are the values predicted by the model and Obi are the
experimental data, n is the number of experimental data,
and p is the number of parameters of the assessed model.
It is expected that the model with the smaller number of
parameters will give a smaller RMSE values (14).

n
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Figure 1. Growth curve of E. coli as measured using impedance
spectroscopy (Replotted from Kim et al).
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In linear regression models the coefficient of
determination or R2 is used to assess the quality of fit of a
model. However, in nonlinear regression where
difference in the number of parameters between one
model to another is normal, the adoption of the method
does not readily provides comparable analysis. Hence an
adjusted R? (Eq. 2 and 3) is used to calculate the quality
of nonlinear models according to the formula where
RMS is Residual Mean Square andis the total variance of
the y-variable (14).

The Akaike information criterion (AIC) provides a means
for model selection through measuring the relative
quality of a given statistical model for a given set of
experimental data (15). AIC handles the trade-off relating
to the goodness of fit of the model as well as the
complexity of the model. It is actually established on
information theory. The method provides a relative
approximation of the information lost for each time a
given model is utilized to represent the process that
creates the information or data. For an output of a set of
predicted model, the most preferred model would be the
model showing the minimum value for AIC. This value is
often a negative value, with for example; an AICc value
of -10 is more preferred than the one with -1.
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The equation incorporates number of parameters penalty,
the more the parameters, the less preferred the output or
the higher the AIC value. Hence, AIC not merely rewards
goodness of fit, but in addition does not encourage using
more complicated model (overfitting) for fitting
experimental data. Since the data in this work is small
compared to the number of parameter used a corrected
version of AIC, the Akaike information criterion (AIC)
with correction or AICc is used instead (16). The AICc is
calculated for each data set for each model according to
the following equation (Eq. 4);

AICc=2p+nln(R—&g)+2(p+1)+M )
n n-p-2

Where n is the number of data points and p is the number
of parameters of the model. The method takes into
account the change in goodness-of-fit and the difference
in number of parameters between two models. For each
data set, the model with the smallest AICc value is highly
likely correct (16,17).

Accuracy Factor (AF) (Eq. 5) and Bias Factor (BF) (Eq.
6) to test for the goodness-of-fit of the models as
suggested by Ross (18) were also used. The Bias Factor
equal to 1 indicate a perfect match between predicted and
observed values. For microbial growth curves or
degradation studies, a bias factor with values < 1
indicates a fail-dangerous model while a bias factor with
values > lindicates a fail-safe model. The Accuracy
Factor is always > 1, and higher AF values indicate less
precise prediction.

& (pd;/0b,)

login 5

Bias factor = 10(12 ©)
&, |(Pd;jiob; )
log————=

[E1 S ©)

Accuracy factor =10

Results and Discussions

Eight different growth models (Table 1) were used in this
study to match the experimental data. The resultant
fitting shows visually acceptable fitting (Fig. 2). Of the
eight only Modified Gompertz, Huang, Baranyi-Roberts
and Buchanan three-phase models (Figs. 2-5) could
model the E. coli growth curve.
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Figure 2. Growth curve of E. coli fitted with Gompertz (A), Huang
(B), Baranyi-Roberts (C), and Buchanan three-phase growth model
(D). The number of cells/ml was transformed into natural logarithm.
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Table 2. Statistical analysis of the various fitting models.
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Model p SSE MSE RMSE AlCc Ra2 BF AF
Modified Gompertz 3 0.0784 0.0060 0.0777 0.986 -67.46 1.0000 1.0032
Huang 4 0.0840 0.0070 0.0837 0.983 -59.98 1.0000 1.0034
Baranyi-Roberts 4 0.0715 0.0060 0.0772 0.986 -62.58 0.9999 1.0028
Buchanan 3 0.0812 0.0062 0.0790 0.985 -66.90 1.0001 1.0030
p no of paramaters
SSE Sums of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error

AlCc Corrected Akaike Information Criterion
Ra? Adjusted coefficient of determination
BF Bias factor

AF Accuracy factor

The results indicate that all of the models used could fit
the growth curves. The modified Gompertz model was
chosen as the best model based on the lowest AICc and
highest adjusted R? values (Table 2). Parameters
obtained from the growth fitting exercise were maximum
specific growth rate (Umax), lag time (A) and maximal
number of cells achieved per droplet (Ymax) with values
of 0.67+0.086 (h'), 2.45+0.24 (h) and 20.26+0.038 (Ln
cell no/ml), respectively.A close contender is the four-
parameter Baranyi-Roberts model. The Gompertz model
is a three-parameter one, whereas the Huang and
Baranyi-Roberts model are four-parameter models.
Three-parameter model is more stable and is simpler and
easier to use and the parameters are less correlated
(6,17). In addition, a three-parameter model has more
degrees of freedom for the parameter estimates.
Furthermore, all three parameters can be given a
biological meaning. In contrast, the fourth parameter in
the four-parameter model is a shape parameter and is
usually difficult to assign any biological and physical
meanings (6,17,19). This means that the Gompertz model
should be more appropriate than the other models in
describing the growth kinetics of this bacterium.

Conclusion

In conclusion, several of the sigmoidal functions
evaluated can be used to model E. coli growth rate from
an impidemetric biosensor set-up with the best model is
the modified Gompertz with an acceptable degree of
goodness- of-fit. The parameters obtained from the
growth curve using this model can be used for further
modeling and optimization exercises for identifying key
controlling parameters of the biosensing device.
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