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The development of in situ sensor for measuring bacterial concentrations in biotechnology and
the health sciences would allow real-time monitoring of the concentration of bacteria. Kim et al
[1] has developed such a method using impedance spectroscopy, and was able to measure in real-
time the concentration of E. coli at 0.01 MHz frequency using impedance changes. We modeled
the growth kinetics using several nonlinear regression methods and discovered that the modified
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Keyword Gompertz model is the best model for the growth of the bacterium [2]. It is well known that

ﬁ;;ie;:s; nonlinear regression of a data and further statistical analysis to find the best model relies on the

E. coli facts that the residuals (difference between observed and predicted data) followed a normal or

Gompertz Gaussian distribution and that the data must be free of outliers. If all of these assumptions are

gtltf;ﬁi{lan three-phase  satisfied, the test is said to be robust. In this work we perform statistical diagnostics to the
artistics

residuals to satisfy the requirements above and found that removal of an outlier allows the
residuals to conform to all of the requirements above. The results indicated that remodelling of the

Gompertz model using the new set of data should be carried out.

Monitoring bacterial growth has been traditionally
carried out using plate count agar or through counting on
a haemocytometer. These methods are time consuming,
require trained personnel and cannot be carried out in
real-time. Due to this, several biosensor-based methods
have been developed to overcome these hurdles
including impedemetric biosensor. Impedance
spectroscopy utilizes electrical properties of materials
and their interfaces with electronically conducting
electrodes. It is a relatively novel and powerful method
[1,3,4]. The use of this method by Kim et al. [1] for
monitoring bacterial growth has been explored and
showed promising results. The resultant bacterial growth
showed a unique sigmoidal characteristics of bacterial
growth including a lag time (A) followed by an

acceleration to a maximal value (Umax) Or exponential
phase culminating in a final phase in which the rate
decreases and finally reaches zero, so that an asymptote
(A) is reached [5]. Of several of the models we used such
as the modified Logistic [5,6], modified Gompertz [5,7],
modified Richards [5,8], modified Schnute [5,9],
Baranyi-Roberts [10] and Von Bertalanffy [11],
Buchanan three-phase [12] and Huang model [13], the
modified Gompertz was fund to be the best [14]. The
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nonlinear regression method used for choosing this
model relies on the Levenberg—Marquardt algorithm
(LMA), also known as the damped least-squares (DLS)
method [15]. However, the subsequent statistical tests
used such as F-test, t-test, Chi-square test and Pearson
correlation coefficient rely heavily on the residuals for
the curve to be normally distributed and random [15].
Furthermore, the residuals must be tested first for the
presence of outliers (at 95 or 99% of confidence)
normally using the Grubb's test in order for these
assumption to be met. Data distortions by a single data
point either the mean or a single data point from a
triplicate can lead to gross error in the fitting of a
nonlinear curve. Checking for outlier is thus an
important part of curve fitting. In this work we perform
statistical diagnosis tests such as the Kolmogorov-
Smirnov, Wilks-Shapiro and D'Agostino-Pearson tests
for normality (normal or Gaussian distribution) and the
Wald—Wolfowitz runs test for detecting residual
randomness.
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Methods

Data were acquired from the works of [2]. The reduction
kinetics using the modified Gompertz model (Fig. 1)
was used as before to obtain residuals for the regression.
Visual observation of the data indicated that data at hour
7 was probably an outlier, and Grubb’s test will be used
to assess this [16].
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Figure 1. Growth curve of E. coli fitted with the modified Gompertz
growth model. The number of cells/ml was transformed into natural
logarithm.

Grubbs’ Statistic

The test is a statistical test used to detect outliers in a
univariate data set which is assumed to originate from a
population of Gaussian or normal distribution. Grubbs
test assume that the data is normally distributed. The
test is used to detect outlier in univariate environment
[16]. The test can be applied to the maximal or minimal
observed data from a Student’s t distribution (Eq. 1) and
to test for both data simultaneously (Eq. 2).
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Normality test

There is two ways to check for normality of residual
and is normally carried out through graphical and
numerical means. Of the two, graphical methods such
as the normal quantile—quantile (Q-Q) plots, histograms
or box plots are the simplest and easiest way to assess
normality of data. Three of the most reported normality
tests were used in this work. They are the Kolmogorov-
Smirnov [17,18], Wilks-Shapiro [19] and the
D’'Agostino-Pearson omnibus K2 [20] test. These tests
were used to test for the normality of the residuals. The
detail mathematical basis of these normality test
statistics is extensive and is available in the literature.
The normality tests were carried out using the
GraphPad Prism® 6 (Version 6.0, GraphPad Software,
Inc., USA).

Runs test

The runs test is also called Wald—Wolfowitz test, after
Abraham Wald and Jacob Wolfowitz. It is a non-
parametric statistical test that checks for the
randomness hypothesis. The runs test could detect a
systematic deviation of over or under estimation
sections of the curve when using a specific model. This
test was carried out to the residuals of the regression in
order to detect randomness in the residuals. The number
of runs of sign is usually expressed in the form of a
percentage of the maximum number possible. The runs
test look at the sequence of the residuals that are usually
positive and negative. A good runs is usually signifies
by alternating or a balance number of positive and
negative residual values. The runs test calculates the
probability for the presence of too many or too few runs
of sign (Eq. 3). The presence of too few runs could
indicate a clustering of residuals with the same sign or
the presence of systematic bias while the presence of
too many of a run sign could indicate the presence of
negative serial correlation [15,21].

The test statistic is

Ho = the sequence was produced randomly
H. = the sequence was not produced randomly
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Results and Discussions

Residual is the difference between measured and
predicted values of a regression model either linear or
nonlinear. Residuals could show how accurate a
mathematical function in the form of a curve in
representing sets of data. Residuals are the difference
between predicted and observed values of a mathematical
model and statistical tests should be carried out to test for
the adequacy of the residuals in obeying normality,
randomness and does not contain outlier. The rule of
thumb is that the larger the difference between the
predicted and observed values, the poorer the model.

Plot of residuals (observed-predicted) were checked and
the analysis showed that the data were randomly
distributed for all tests. In addition all normality tests
carried out shows the residual conforming to the normal
distribution (Table 1). The Grubbs’ test was applied in
order to identify the outlier(s). The Grubbs’ test statistic
identifies the largest absolute deviation from the sample
mean in units of the sample standard deviation. The
Grubbs’ test did nor indicates the presence of any outlier.
Residuals are very important in assessing the health of a
curve from a particular used model. Mathematically,

residual for the i observation in a given data set can be
defined as follows;

e,=y,~{x;:8) ©)

where y;i denotes the i response from a given data set
while x; is the vector of explanatory variables to each set

at the it observation corresponding values in the data set.

The Q-Q plot could be used as a visual indication for
normality. The residuals data when plotted on the normal
probability Q-Q plot of residuals for the modified
Gompertz model showed an almost straight line and
indicates no underlying pattern (Fig. 3). The resulting
histogram of the residuals showed at first a non Gaussian
distribution but the normality tests showed that the
residuals were indeed conforming to normality. The his-
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Table 1. Numerical normality test for the residual from the modified
Gompertz model.

Normality test Analysis

D’Agostino & Pearson omnibus test

K2 2715
P value 0.2497
Passed normality test (alpha = 0.05)? Yes
P value summary ns

Shapiro-Wilk test

W 0.9442
P value 0.5130
Passed normality test (alpha = 0.05)? Yes
P value summary ns

Kolmogorov-Smirnov test

KS distance 0.1297
P value >0.1000
Passed normality test (alpha = 0.05)? Yes

P value summary ns
Skewness -0.8819
Kurtosis 0.7503
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Figure 2. Residual plot for the modified Gompertz model.

togram was then overlaid with the resulting normal
distribution curve (Fig. 4).

Number of bins and samples examined determined the
shape of the distribution. The Kolmogorov-Smirnov
statistic is a non-parametric numerical test that compares
the cumulative frequency of residuals. It calculates the
agreement between the model and observed values. It
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Figure 3. Normal Q-Q plot for the observed sample
against theoretical quantiles.

calculates the agreement between the model and
observed values. It could also be used as a measure
between two series of observation. The p value is
calculated for the difference between two cumulative
distributions and sample size [17,18]. The skewness and
kurtosis of the distribution is computed as a method to
quantify the difference between the sample distributions
to a normal distribution. In the Wilks-Shapiro test [19], a
W2 statistic is calculated based on the expected values of
the order statistics between identically-distributed
random variables and their independent covariance and
the standard normal distribution, respectively. If the test
statistics value-W? is high, then the agreement is
rejected. In the D’'Agostino-Pearson normality test
method, a p-value from the sum of these discrepancies is
then computed. The most often form of the D'Agostino-
Pearson normality tests is the omnibus K2 test as
D’Agostino developed several normality tests [15].

Runs test

The runs test showed that the number of runs was 6,
while the expected number of runs under the assumption
of randomness was 7.46 (Table 2), indicating the series
of residuals had marginally adequate runs. The Z-value
indicates how many standard errors the observed number
of runs is below the expected number of runs, the
corresponding p-value indicate how extreme this z-value
is. The interpretation is the same like other p-values
statistics. If the p-value is less than 0.05 then the null
hypothesis that the residuals are indeed random can be
rejected. Since the p-value was greater than 0.05,
therefore the null hypothesis is not rejected indicating no
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Figure 4. Histogram of residual for the modified Gompertz model overlaid with a normal
distribution (mean 0.00078 and standard deviation 0.08084).

convincing evidence of non-randomness of the residuals
and they do represent noise. The presence of too many of
a run sign could indicate the presence of negative serial
correlation whilst the presence of too few runs could
indicate a clustering of residuals with the same sign or
the presence of systematic bias. The runs test could
detect systematic deviation of the curve such as over or
under estimation of the sections when using a specific
model [15]. The runs test calculates the probability for
the presence of too many or too few runs of sign. The
runs test is an important tool in nonlinear regression to
detect nonrandomness of the residuals [21]. The runs test
look at the sequence of the residuals that are usually
positive and negative. A good runs is usually signifies by
alternating or a balance number of positive and negative
residual values. The number of runs of sign is usually
expressed in the form of a percentage of the maximum
number possible.

Table 2. Runs test for randomness.

Runs test Residual data set
Observations 6

Below mean 6

Above mean 7

No. of runs 13

E R) 74615

Var (R) 2.9408
StDev (R) 1.7149

Z - value -0.8523

2 - sided p - value 0.3941
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Conclusion

In conclusion, the various statistical tests for the residuals
indicated that the use of the modified Gompertz model in
fitting of the reduction curve for this bacterium is
adequate. The tests statistics carried out in this work is
important since if the results obtained violated Gaussian
or normal distribution, than non parametric methods such
as the Pearson’s correlation coefficient either normal or
adjusted, root mean square analysis, Kruskal-Wallis
(nonparametric ANOVA) test should be used. Another
remedy that can be used in the event of nonconformity
includes changing to a different model that obeys or
fulfills the above robust requirement. These assumptions
could avoid errors of the Type I and II errors.

Acknowledgement

This project was supported by a grant from Snoc
International Sdn Bhd.

References

1. Kim YH, Park ]S, Jung HI. An impedimetric biosensor for
real-time monitoring of bacterial growth in a microbial
fermentor. Sensor Actuat B-Chem. 2009; 138:270-277.

2. Shukor MS, Shukor MY. Modeling the growth kinetics of E.
coli measured using real-time impedimetric biosensor.
Nanobio Bionano. 2014; 1:52-57.

3. Dweik M, Stringer RC, Dastider SG, Wu Y, Almasri M,
Barizuddin S. Specific and targeted detection of viable
Escherichia coli O157:H7 using a sensitive and reusable
impedance biosensor with dose and time response studies.
Talanta. 2012; 94:84—89.

4. Ward AC, Connolly P, Tucker NP. Pseudomonas
aeruginosacan be detected in a polymicrobial competition
model using impedance spectroscopy with a novel biosensor.
PLoS ONE. 2014; 9.

5. Zwietering MH, Wit JCD, Cuppers HGAM, Riet KV.
Modeling of bacterial growth with shifts in temperature. Appl
Environ Microb. 1994; 60:204—213.

6. Ricker WE. 1979. 11 Growth Rates and Models. p. 677.

7. Gompertz B. On the nature of the function expressive of the
law of human mortality, and on a new mode of determining
the value of life contingencies. Philos Trans R Soc London.
1825; 115:513-585.

8. Richards FJ. A flexible growth function for empirical use. |
Exp Bot. 1959; 10:290-300.

9. Schnute J. A versatile growth model with statistically stable

parameters. Can ] Fish Aquat Sci. 1981; 38:1128—40.

Baranyi J. Mathematics of predictive food microbiology. Int |

Food Microbiol. 1995; 26:199-218.

Bertalanffy LV. 1951. Heoretische Biologie, Zweiter Band:

Stoffwechsel,Wachstum. A FranckeAG Verlag, Bern,

Switzerland; p. 418.

Buchanan RI, Golden MH. Model for the non-thermal

inactivation of Listeria monocytogenes in a reduced oxygen

environment. Food Microbiol. 1995; 12:203-212.

10.

11.

12.

62

13.

14.

15.

16.
17.
18.
19.
20.

21.

Communication Open Access

Huang L. Optimization of a new mathematical model for
bacterial growth. Food Control. 2013; 32:283-288.

Abd Rachman AR, Halmi MIE, Shukor MY. Amplification of
new isolated luciferase gene from marine Photobacterium
strain MIE by using specific PCR. ] Environ Microbiol
Toxicol. 2014; 2:35-7.

Motulsky HJ, Ransnas LA. Fitting curves to data using
nonlineat regression: a practical and nonmathematical review.
FASEB J Off Publ Fed Am Soc Exp Biol. 1987; 1:365-374.
Grubbs F Procedures for detecting outlying observations in
samples. Technometrics. 1969; 11:1-21.

Kolmogorov A. Confidence limits for an unknown
distribution function. Ann Math Stat. 1941; 12:461-463.
Smirnov N. Table for estimating the goodness of fit of
empirical distributions. Ann Math Stat. 1948; 19:279-281.
Royston P. Wilks-Shapiro algorithm. Appl Stat. 1995; 44:R94.
D’Agostino RB. 1986. Tests for Normal Distribution. In:
D’Agostino RB, ed. Stephens MA, Goodness-Of-Fit
Techniques. Marcel Dekker

Draper NR, Smith H. 1981. Applied Regression Analysis.
Wiley, New York;

Nanobio Bionano 2014 (2) 58-62



