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       onitoring bacterial growth has been traditionally 
carried out using plate count agar or through counting on 
a haemocytometer. These methods are time consuming, 
require trained personnel and cannot be carried out in 
real-time. Due to this, several biosensor-based methods 
have been developed to overcome these hurdles 
including impedemetric biosensor. Impedance 
spectroscopy utilizes electrical properties of materials 
and their interfaces with electronically conducting 
electrodes. It is a relatively novel and powerful method 
[1,3,4]. The use of this method by Kim et al. [1] for 
monitoring bacterial growth has been explored and 
showed promising results. The resultant bacterial growth 
showed a unique sigmoidal characteristics of bacterial 
growth including a lag time (λ) followed by an 
acceleration to a maximal value (μmax) or exponential 
phase culminating in a final phase in which the rate 
decreases and finally reaches zero, so that an asymptote 
(A) is reached [5]. Of several of the models we used such
as the modified Logistic [5,6], modified Gompertz [5,7],
modified Richards [5,8], modified Schnute [5,9],
Baranyi-Roberts [10] and Von Bertalanffy [11],
Buchanan three-phase [12] and Huang model [13], the
modified Gompertz was fund to be the best [14]. The

nonlinear regression method used for choosing this 
model relies on the Levenberg–Marquardt algorithm 
(LMA), also known as the damped least-squares (DLS) 
method [15]. However, the subsequent statistical tests 
used such as F-test, t-test, Chi-square test and Pearson 
correlation coefficient rely heavily on the residuals for 
the curve to be normally distributed and random [15]. 
Furthermore, the residuals must be tested first for the 
presence of outliers (at 95 or 99% of confidence) 
normally using the Grubb's test in order for these 
assumption to be met. Data distortions by a single data 
point either the mean or a single data point from a 
triplicate can lead to gross error in the fitting of a 
nonlinear curve. Checking for outlier is thus an 
important part of curve fitting. In this work we perform 
statistical diagnosis tests such as the Kolmogorov-
Smirnov, Wilks-Shapiro and D'Agostino-Pearson tests 
for normality (normal or Gaussian distribution) and the 
Wald–Wolfowitz runs test for detecting residual 
randomness. 
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The development of in situ sensor for measuring bacterial concentrations in biotechnology and 
the health sciences would allow real-time monitoring of the concentration of bacteria. Kim et al 
[1] has developed such a method using impedance spectroscopy, and was able to measure in real-
time the concentration of E. coli at 0.01 MHz frequency using impedance changes. We modeled
the growth kinetics using several nonlinear regression methods and discovered that the modified
Gompertz model is the best model for the growth of the bacterium [2]. It is well known that
nonlinear regression of a data and further statistical analysis to find the best model relies on the
facts that the residuals (difference between observed and predicted data) followed a normal or
Gaussian distribution and that the data must be free of outliers. If all of these assumptions are
satisfied, the test is said to be robust. In this work we perform statistical diagnostics to the
residuals to satisfy the requirements above and found that removal of an outlier allows the
residuals to conform to all of the requirements above. The results indicated that remodelling of the
Gompertz model using the new set of data should be carried out. 
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Methods 

Data were acquired from the works of [2]. The reduction 
kinetics using the modified Gompertz model (Fig. 1) 
was used as before to obtain residuals for the regression. 
Visual observation of the data indicated that data at hour 
7 was probably an outlier, and Grubb’s test will be used 
to assess this [16]. 

Grubbs’ Statistic 

The test is a statistical test used to detect outliers in a 
univariate data set which is assumed to originate from a 
population of Gaussian or normal distribution. Grubbs 
test assume that the data is normally distributed. The 
test is used to detect outlier in univariate environment 
[16]. The test can be applied to the maximal or minimal 
observed data from a Student’s t distribution (Eq. 1) and 
to test for both data simultaneously (Eq. 2).  

(1) 

(2) 

(3) 

(4) 

(5) 

Normality test 

There is two ways to check for normality of residual 
and is normally carried out through graphical and 
numerical means. Of the two, graphical methods such 
as the normal quantile–quantile (Q-Q) plots, histograms 
or box plots are the simplest and easiest way to assess 
normality of data. Three of the most reported normality 
tests were used in this work. They are the Kolmogorov-
Smirnov [17,18], Wilks-Shapiro [19] and the 
D'Agostino-Pearson omnibus K2 [20] test. These tests 
were used to test for the normality of the residuals. The 
detail mathematical basis of these normality test 
statistics is extensive and is available in the literature. 
The normality tests were carried out using the 
GraphPad Prism® 6 (Version 6.0, GraphPad Software, 
Inc., USA). 

Runs test 

The runs test is also called Wald–Wolfowitz test, after 
Abraham Wald and Jacob Wolfowitz. It is a non-
parametric statistical test that checks for the 
randomness hypothesis. The runs test could detect a 
systematic deviation of over or under estimation 
sections of the curve when using a specific model. This 
test was carried out to the residuals of the regression in 
order to detect randomness in the residuals. The number 
of runs of sign is usually expressed in the form of a 
percentage of the maximum number possible. The runs 
test look at the sequence of the residuals that are usually 
positive and negative. A good runs is usually signifies 
by alternating or a balance number of positive and 
negative residual values. The runs test calculates the 
probability for the presence of too many or too few runs 
of sign (Eq. 3). The presence of too few runs could 
indicate a clustering of residuals with the same sign or 
the presence of systematic bias while the presence of 
too many of a run sign could indicate the presence of 
negative serial correlation [15,21]. 

The test statistic is 

H0 = the sequence was produced randomly 
Ha = the sequence was not produced randomly 

(6) 

Figure 1. Growth curve of E. coli fitted with the modified Gompertz 
growth model.  The number  of  cells/ml  was  transformed into  natural 
logarithm.
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    (7) 
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Results and Discussions 

Residual is the difference between measured and 
predicted values of a regression model either linear or 
nonlinear. Residuals could show how accurate a 
mathematical function in the form of a curve in 
representing sets of data. Residuals are the difference 
between predicted and observed values of a mathematical 
model and statistical tests should be carried out to test for 
the adequacy of the residuals in obeying normality, 
randomness and does not contain outlier. The rule of 
thumb is that the larger the difference between the 
predicted and observed values, the poorer the model.  

Plot of residuals (observed-predicted) were checked and 
the analysis showed that the data were randomly 
distributed for all tests. In addition all normality tests 
carried out shows the residual conforming to the normal 
distribution (Table 1). The Grubbs’ test was applied in 
order to identify the outlier(s). The Grubbs’ test statistic 
identifies the largest absolute deviation from the sample 
mean in units of the sample standard deviation. The 
Grubbs’ test did nor indicates the presence of any outlier. 
Residuals are very important in assessing the health of a 
curve from a particular used model. Mathematically, 
residual for the ith observation in a given data set can be 
defined as follows; 

    (9) 

where yi denotes the ith response from a given data set 
while xi is the vector of explanatory variables to each set 
at the ith observation corresponding values in the data set. 

The Q-Q plot could be used as a visual indication for 
normality. The residuals data when plotted on the normal 
probability Q-Q plot of residuals for the modified 
Gompertz model showed an almost straight line and 
indicates no underlying pattern (Fig. 3). The resulting 
histogram of the residuals showed at first a non Gaussian 
distribution but the normality tests showed that the 
residuals were indeed conforming to normality. The his- 

togram was then overlaid with the resulting normal 
distribution curve (Fig. 4). 

Number of bins and samples examined determined the 
shape of the distribution. The Kolmogorov-Smirnov 
statistic is a non-parametric numerical test that compares 
the cumulative frequency of residuals. It calculates the 
agreement between the model and observed values. It 

Table 1. Numerical normality test  for the residual from the modified 
Gompertz model.1.2
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Normality test Analysis

D’Agostino & Pearson omnibus test

K2 2.775

P value 0.2497

Passed normality test (alpha = 0.05)? Yes

P value summary ns

Shapiro-Wilk test

W 0.9442

P value 0.5130

Passed normality test (alpha = 0.05)? Yes

P value summary ns

Kolmogorov-Smirnov test

KS distance 0.1297

P value > 0.1000

Passed normality test (alpha = 0.05)? Yes

P value summary ns

Skewness -0.8819

Kurtosis 0.7503
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Figure 2. Residual plot for the modified Gompertz model.
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calculates the agreement between the model and 
observed values. It could also be used as a measure 
between two series of observation. The p value is 
calculated for the difference between two cumulative 
distributions and sample size [17,18]. The skewness and 
kurtosis of the distribution is computed as a method to 
quantify the difference between the sample distributions 
to a normal distribution. In the Wilks-Shapiro test [19], a 
W2 statistic is calculated based on the expected values of 
the order statistics between identically-distributed 
random variables and their independent covariance and 
the standard normal distribution, respectively. If the test 
statistics value-W2 is high, then the agreement is 
rejected. In the D'Agostino-Pearson normality test 
method, a p-value from the sum of these discrepancies is 
then computed. The most often form of the D'Agostino-
Pearson normality tests is the omnibus K2 test as 
D'Agostino developed several normality tests [15]. 

Runs test 

The runs test showed that the number of runs was 6, 
while the expected number of runs under the assumption 
of randomness was 7.46 (Table 2), indicating the series 
of residuals had marginally adequate runs. The Z-value 
indicates how many standard errors the observed number 
of runs is below the expected number of runs, the 
corresponding p-value indicate how extreme this z-value 
is. The interpretation is the same like other p-values 
statistics. If the p-value is less than 0.05 then the null 
hypothesis that the residuals are indeed random can be 
rejected. Since the p-value was greater than 0.05, 
therefore the null hypothesis is not rejected indicating no 

convincing evidence of non-randomness of the residuals 
and they do represent noise. The presence of too many of 
a run sign could indicate the presence of negative serial 
correlation whilst the presence of too few runs could 
indicate a clustering of residuals with the same sign or 
the presence of systematic bias. The runs test could 
detect systematic deviation of the curve such as over or 
under estimation of the sections when using a specific 
model [15]. The runs test calculates the probability for 
the presence of too many or too few runs of sign. The 
runs test is an important tool in nonlinear regression to 
detect nonrandomness of the residuals [21]. The runs test 
look at the sequence of the residuals that are usually 
positive and negative. A good runs is usually signifies by 
alternating or a balance number of positive and negative 
residual values. The number of runs of sign is usually 
expressed in the form of a percentage of the maximum 
number possible. 

Open Access

Figure 3. Normal Q-Q plot for the observed sample 
against theoretical quantiles.
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Figure 4. Histogram of residual for the modified Gompertz model overlaid with a normal 
distribution (mean 0.00078 and standard deviation 0.08084).

Runs test Residual data set

Observations 6

Below mean 6

Above mean 7

No. of runs 13

E (R) 7.4615

Var (R) 2.9408

StDev (R) 1.7149

Z - value -0.8523

2 - sided p - value 0.3941

Table 2. Runs test for randomness.
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Conclusion 
In conclusion, the various statistical tests for the residuals 
indicated that the use of the modified Gompertz model in 
fitting of the reduction curve for this bacterium is 
adequate. The tests statistics carried out in this work is 
important since if the results obtained violated Gaussian 
or normal distribution, than non parametric methods such 
as the Pearson’s correlation coefficient either normal or 
adjusted, root mean square analysis, Kruskal-Wallis 
(nonparametric ANOVA) test should be used. Another 
remedy that can be used in the event of nonconformity 
includes changing to a different model that obeys or 
fulfills the above robust requirement. These assumptions 
could avoid errors of the Type I and II errors.  
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