Biogenic Green Synthesis of Zinc Oxide Nanoparticles from Defatted Coconut Presscake for Wastewater Treatment

Nurain Afina binti A’bas¹², Devi-Nair Gunasegavan Rathi²³, Abubakar Dantani Meli¹, Mohamed Abdelmonem³, Che Azurahanim Che Abdullah³, Afidah binti Abu Talib¹ and Radhiah Shukri¹*

¹Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
²Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
³Biophysics Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

*Corresponding author:
Assoc. Prof. Dr. Radhiah Shukri
Department of Food Technology,
Faculty of Food Science and Technology,
Universiti Putra, Malaysia,
43400 UPM Serdang,
Selangor,
Malaysia.
Emel: radhiah@upm.edu.my

INTRODUCTION

Wastewater treatment is crucial for the food industry in Malaysia, serving to safeguard the environment, ensure regulatory adherence, conserve water resources, and uphold public health. The sector's growth has resulted in a surge of wastewater discharge containing a spectrum of pollutants, from organic matter to potentially hazardous substances. While conventional treatment methods are effective, they often present challenges in terms of cost and environmental impact [1, 2]. Utilizing biogenic nano-materials from food by-products like defatted coconut meat presscake from coconut milk extraction, presents a sustainable solution. These nanomaterials, synthesized from waste extracts, have demonstrated significant potential in previous studies for efficiently treating the diverse pollutants present in food industry wastewater [3-5]. Nanoparticles offer promising solutions for treating wastewater through various mechanisms, including antimicrobial action and photocatalysis.

This study focuses on developing such materials from defatted coconut meat presscake for food industry wastewater treatment. By using the Taguchi method, the aim is to optimize the synthesis of ZnO nanoparticles from defatted coconut meat presscake extract. The goal is to enhance their photocatalytic activity for better pollutant degradation, particularly under UV irradiation. UV light serves as the primary energy source for initiating and driving photocatalytic reactions involving nanoparticles, thereby enabling efficient and sustainable wastewater treatment processes. Additionally, the study
explores the potential antibacterial activity of these nanoparticles, expanding their application in food industry wastewater treatment. By investigating defatted coconut meat presscake as a sustainable source for biogenic nanomaterials, this research aims to provide a sustainable solution to the wastewater treatment challenges faced by Malaysia’s food industry.

MATERIALS AND METHODS

Materials

Defatted coconut meat presscake was obtained from a Public Market in Serdang, Selangor. Zinc acetate dihydrate was obtained from R&M Chemicals, UK and methylene blue was purchased from Nacalai Tesque, Kyoto, Japan. Distilled water and all chemicals were analytical grade. Glassware used was thoroughly washed and dried. Defatted coconut meat presscake was washed with tap water followed by removal of coconut shell specks, then cleaned by mixing with boiled water and pressed using a coconut milk screw presser to remove any excess water or oil. The residue was frozen at -40°C, freeze-dried to 7% moisture in a Scanvac Coolsafe Freeze Dryer, ground into fine particles with a kitchen blender, vacuum packed, and stored at 4°C.

Sample preparation

In order to obtain defatted coconut meat residue extract (CMRE), 2.5 g of defatted coconut meat presscake powder was stirred with 100 mL distilled water for 45 min at 200 rpm, then centrifuged at 5000 rpm for 30 min to obtain a cloudy extract. The filtered extract was refrigerated for use. ZnO NPs were synthesized via a co-precipitation method with CMRE and zinc acetate solution. Zinc acetate (0.1 M) in 100 mL water was stirred, and 50 mL CMRE was added dropwise until the pH reached 12. After stirring for 2 h, the solution was centrifuged, pellets washed, dried, ground, and stored.

The Taguchi method was used with a fractional factorial design (L9) for nine experimental runs, varying precursor concentration, defatted coconut meat presscake extract volume, pH, and temperature. The experimental parameters were within the following ranges: precursor concentration ranged from 0.05 to 0.20, extract volume from 20 to 100 mL, pH from 8 to 12, and temperature from 0°C to 90°C. From the Taguchi analysis and UV-Vis results, it was determined that a combination of zinc acetate (0.1 M) in 100 mL water and 50 mL CMRE at pH 12 yielded optimal results in terms of particle size. Subsequently, this optimized sample was selected for further characterization.

UV-Vis, X-ray diffraction (XRD), FT-IR spectrometer, and Field Emission Scanning Electron Microscope (FESEM)

Confirmation of ZnO NPs was done with UV–Vis spectrophotometry (200–800 nm), XRD for crystal structure, FT-IR spectrometer for functional groups, and FESEM for surface morphology. Thermal stability was analyzed with TGA-DSC. Methylene blue (MB) was prepared, with 15 mg catalyst added to MB. After equilibration, MB concentration was recorded, followed by UV-light exposure and subsequent concentration measurements. Photocatalytic degradation was calculated. Antibacterial activity against pathogenic bacteria in fish processing industry wastewater was assessed by the colony counting method. Varying concentrations (0, 0.1, 1, 5 mg/L) of ZnO nanoparticles were mixed with wastewater and stirred for four h. Serial dilutions were plated on agar, incubated at 37°C for 24 h, and colonies were counted using a colony counter device.

RESULT AND DISCUSSION

CMRE successfully facilitated the synthesis of zinc oxide nanoparticles (ZnO NPs), evidenced by the formation of a white precipitate when added to a zinc acetate solution. The UV-VIS spectrum in Fig. 1 displayed a prominent absorbance peak at 367 nm, characteristic of ZnO NPs. This aligns with established ranges for ZnO NPs (350-375 nm) as seen in previous studies [6,7,8]. The optical band gap of the ZnO NPs was calculated at 2.74 eV as shown in Fig. 2, indicating their semiconductor nature suitable for applications in photocatalysis and optoelectronics.

![Fig. 1. UV-Vis spectrum of ZnO NPs synthesized from defatted coconut meat presscake extract.](image1)

![Fig. 2. Optical band gap of the synthesized ZnO NPs from defatted coconut meat presscake extract.](image2)

XRD patterns in Fig. 3 revealed distinct peaks corresponding to the hexagonal wurtzite ZnO structure, with peaks at (100), (002), (101), (102), (110), (103), (200), (112), and (201) planes. The sharp, intense peaks indicated high crystallinity and the average crystallite size was determined as 20.68 nm using the Debye-Scherrer formula, consistent with literature findings [9-11].

This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
FTIR spectra in Fig. 4 exhibited characteristic peaks indicative of functional groups in the ZnO NPs. Peaks at 3372 cm⁻¹ indicated O–H stretching, 2852 cm⁻¹ suggested C–H bonds, and 1558/1411 cm⁻¹ indicated C=O stretching vibrations. The peak at 876 cm⁻¹ confirmed tetrahedral coordination of Zn, with 607 cm⁻¹ supporting ZnO stretching vibrations, further confirming ZnO NPs formation.

FESEM images in Fig. 5 illustrated the morphology of ZnO NPs from defatted coconut meat residue, showing irregular shapes and sizes ranging from 34 to 75 nm. The observed agglomeration was likely due to the uniform distribution of Zn cations, indicating successful ZnO NPs synthesis with the extract. Fig. 6 demonstrated the thermal stability of the ZnO NPs. Minimal weight loss, especially beyond 400 °C, indicated strong stability, essential for various applications of ZnO NPs.

Fig. 3. XRD pattern of synthesized ZnO NPs from defatted coconut meat presscake extract

Fig. 4. FTIR spectra of synthesized ZnO NPs from defatted coconut meat presscake extract.

Fig. 5. FESEM image of ZnO NPs from defatted coconut meat presscake extract under 50000× and 100000× magnifications.

Fig. 6. TGA analysis of ZnO NPs from defatted coconut meat presscake extract.

Fig. 7(a) shows the evaluation of the photocatalytic activity using methylene blue degradation where a 79.5% reduction after 180 min of exposure to ZnO NPs was obtained. This effective degradation was attributed to the generation of reactive species like hydroxyl radicals and superoxide radical anions under UV light [12]. The degradation of methylene blue solution without photocatalyst was shown in Fig. 7(b) and it can be seen that there was no considerable reduction.
the formation of Zn–O bond. The XRD image analysis proved the breakdown of MB reached 79.5% in 180 min. The ZnO NPs demonstrated that ZnO NPs effectively separate photogenerated electron–hole pairs, which is a prerequisite for enhanced photocatalytic performance. Under UV exposure, the findings of the photocatalytic dye degradation successfully synthesized in an environmentally friendly and sustainable manner using an aqueous extract of defatted coconut meat presscake. This leads to damaged bacterial cell membranes, where the nanoparticles attach firmly to inactivate bacteria, preventing further action [13].

CONCLUSION
The findings of this study concluded that ZnO NPs have been successfully synthesized in an environmentally friendly and sustainable manner using an aqueous extract of defatted coconut meat presscake as a reducing agent. The FTIR analysis showed the formation of Zn–O bond. The XRD image analysis proved high crystallinity hexagonal ZnO crystals of the wurtzite type were formed. The findings of the photocatalytic dye degradation demonstrated that ZnO NPs effectively separate photogenerated electron–hole pairs, which is a prerequisite for enhanced photocatalytic performance. Under UV exposure, the breakdown of MB reached 79.5% in 180 min. The ZnO NPs also showed a significant microbial reduction in wastewater. The results of this study highlight the potential of defatted coconut meat presscake to synthesize multifunctional ZnO NPs used for wastewater treatment and microorganisms’ inactivation.

ACKNOWLEDGEMENT
We want to acknowledge Kurita Water and Environment Foundation, grant number 22Py233-A6, for funding the research.

REFERENCES

Table 1. Bacteria count (CFU/mL) of wastewater with different concentration of zinc oxide nanoparticles and percentage of removal.

<table>
<thead>
<tr>
<th>Concentration of zinc oxide nanoparticles (mg/L)</th>
<th>Bacteria count (CFU/mL)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>16.5 x 10⁶</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>10.2 x 10⁶</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>8.3 x 10⁶</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>3.8 x 10⁶</td>
<td>77</td>
</tr>
</tbody>
</table>