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INTRODUCTION 
 
Interacting with biological molecules that exist in living 
organisms, biochemistry research involves delving into the 
intricacies of structure and function while also exploring various 
chemical processes. Biomolecules such as proteins, nucleic 
acids, and lipids are meticulously scrutinized while metabolic 
pathways are mapped. Additionally, mechanisms of enzymatic 
reactions are explored extensively, among other areas [1]. 
Unsurprisingly, the field generates substantial and 
multidimensional datasets, including complex systems biology 
models, DNA and protein sequences, gene expression data, and 
metabolomics profiles [2]. Due to the increasingly challenging 
nature of analyzing these vast biochemical datasets through 
traditional computational methods, the integration of artificial 

intelligence offers great potential to revolutionize biochemistry 
research [3]. This is where artificial intelligence shows great 
promise to transform biochemistry research. Tasks, such as 
recognizing visuals, learning from previous input, and 
understanding spoken words required human intelligence until 
AI was developed. AI is the practice of creating computer 
systems that are capable of performing these tasks just as humans 
would [4].  

 
Machine learning, a type of AI, enables computers to learn 

from data to make predictions and decisions without explicit 
programming [5]. The exceptional capacity of machine learning 
algorithms to rapidly analyse immense, multifaceted biochemical 
data has the potential to uncover novel insights previously out of 
reach [6]. For instance, deep learning neural networks have been 
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 ABSTRACT 
The exploration of Biochemistry research has been expanded by artificial intelligence (AI) and 
its ability to analyse immense and intricate datasets in a way that would be unattainable by human 
effort alone. This review delves into the most recent examples of AI breakthroughs that had a 
transformative impact on key aspects of biochemistry. AI has now led to the creation and 
improvement of drug molecules and the capability to predict which new proteins could be 
targeted for repurposing with current drugs. When it comes to protein structures, algorithms such 
as AlphaFold have made great strides in resolving the protein folding problem that has been a 
challenge for so long. Reliably identifying proteins and metabolites from spectral data is now 
possible with deep learning models. Meanwhile, AI can classify sequences and spot gene 
expression patterns in massive genomics and transcriptomics datasets with ease. The remarkable 
capabilities of AI to automate the analysis of medical images and natural language descriptions 
of patient symptoms have a promising potential for transforming disease diagnosis and treatment. 
Nevertheless, obstacles such as data availability, interpretability of AI models, ethical 
considerations, and generalization must be tackled as these technologies evolve. The 
collaboration between AI and biochemistry appears to be optimistic, with biochemical data 
powering the development of more robust AI systems that can extract new knowledge from vast 
datasets beyond human reach. Thus, this mutually beneficial relationship has the potential to 
vastly expedite discovery across molecular biology. 
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used to predict protein secondary structure from amino acid 
sequences with high accuracy [7] and identify enzyme 
commission numbers to infer metabolic pathways [8]. 
Looking forward, biochemistry and AI are poised to mutually 
advance each other's progress. As biochemistry research 
produces growing volumes of multidimensional data, 
increasingly sophisticated AI capabilities will be essential to 
extracting meaningful patterns and knowledge [9]. In turn, 
having vast biological datasets to train on will push AI techniques 
forward [10]. Together, the synergistic combination of 
biochemistry and AI promises exciting new frontiers in 
deciphering the complexity of living systems at a deeper level 
[11]. This review explores the state-of-the-art applications of AI 
propelling biochemistry research forward, as well as future 
directions in this rapidly developing field. 
 
Literature search strategy and study design 
An extensive literature search was conducted to identify relevant 
studies on the application of artificial intelligence (AI) in 
biochemistry research. The following search engines and 
databases were searched: Google Scholar, PubMed, Science 
Direct, Web of Science, Scopus, and IEEE Xplore. The search 
strategy included a combination of keywords related to AI and 
biochemistry. The reference lists of included articles were hand-
searched to identify any additional relevant studies. Relevant 
studies on applications of artificial intelligence in biochemistry 
research published in English were included. Non peer-reviewed 
articles were excluded.  
 

Data was extracted on study details, AI methods, 
biochemistry domain and application, and performance metrics. 
The findings were synthesized narratively by grouping articles 
based on the area of biochemistry research: drug discovery, 
protein structure prediction, genomics/transcriptomics, 
metabolomics/proteomics, disease diagnosis and treatment. A 
descriptive summary is provided for the types of AI methods 
applied, the specific tasks suited for AI, and the impact on 
biochemistry research. 
 
Types of Artificial Intelligence 
 
Machine learning and deep learning are two AI techniques that 
show significant potential for enhancing biochemistry research. 
 
Machine learning 
According to Dasgupta and Nath [12] machine learning is the 
idea of utilizing an algorithm to enhance its performance by 
learning from data. There are four main types of problems that 
machine learning can solve, namely prediction, clustering, 
classification, and dimensionality reduction, as described by Liu, 
Esan [13]. Machine learning techniques can be classified into 
four groups depending on their learning methods, namely 
supervised learning, unsupervised learning, semi-supervised 
learning, and reinforcement learning, according to Ayodele [14]. 
 
Supervised learning 
Supervised learning is a type of machine learning where a model 
learns to map inputs to outputs based on labelled training data 
(Fig. 1) [15]. This method is task-driven since it is frequently 
employed when specified objectives must be satisfied from a 
collection of inputs [16]. Supervised learning tasks are divided 
into two major categories, namely classification tasks, which 
involves the segregation of data into specific categories by the 
model, and regression tasks, which involves fitting the data to a 
function [5].  
 
 

For example, supervised learning can be used to predict the 
activity of a drug candidate based on its chemical structure or to 
classify a set of proteins into functional groups based on their 
sequence or structural features. 
To ensure the accuracy of supervised learning models, it's 
important to have high-quality labelled data. This can be time-
consuming and costly, and in some cases, it may not be feasible 
to obtain a sufficient amount of labelled data. In such cases, semi-
supervised or unsupervised learning methods may be used 
instead [5]. 
 
 

 
 
 
Fig 1. Supervised learning model. The main task is to construct an 
estimator able to predict the label of an object given by the set of features 
[17]. 
 
Unsupervised learning 
Unsupervised learning is a type of machine learning that analyses 
unlabelled datasets (Fig 2.), without the need for human 
interference [15]. In biochemistry, unsupervised learning can be 
particularly useful for identifying patterns and relationships in 
large datasets, such as gene expression data or protein-protein 
interaction networks [18]. 
However, unsupervised learning is much harder than supervised 
learning because the computer must learn to perform tasks 
without explicit instructions [14]. There are two main approaches 
to unsupervised learning. 
 

The first approach involves teaching the agent through a 
reward system, rather than explicit categorizations. This 
approach is particularly useful for decision-making problems, 
where the goal is to make a decision rather than to categorize the 
problem. In biochemistry research, this approach can be used for 
drug discovery, where the goal is to identify compounds that are 
likely to have a certain biological effect, without necessarily 
knowing the mechanism by which they work. The reward system 
can be learned from previous successes and failures [19]. 
 

The second approach is clustering, where similarities in the 
training data are identified to form groups, or clusters. The 
assumption is that the clusters will match reasonably well with 
an intuitive classification. In biochemistry research, clustering 
can be used to group proteins or genes based on their expression 
profiles or functional annotations, for example. Clustering can 
also be used for drug discovery, where compounds are grouped 
based on their chemical properties or biological activities [12]. 
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Fig 2. Unsupervised learning model. The unsupervised learning 
algorithms are searching the similarity between pieces of data in order to 
determinate if they can be categorized and create a group [17]. 
 
Semi-supervised learning 
Semi-supervised learning is a method that combines both 
supervised and unsupervised learning by using both labelled and 
unlabelled data for training a model [15, 16]. In the field of 
biochemistry, labelled data may be scarce due to the high cost 
and time involved in labelling experimental data. Thus, semi-
supervised learning can be an effective technique for training 
models in biochemistry research where only a limited number of 
labelled samples are available. Semi-supervised learning has 
been successfully applied in various areas of biochemistry, such 
as protein classification and prediction, gene expression analysis, 
and drug discovery [20]. 
 
Reinforcement learning 
Through Reinforcement Learning (RL), a machine learning 
technique, an agent can acquire knowledge through 
experimentation and feedback from its encounters and activities 
in an interactive environment. This approach diverges from 
supervised learning as RL does not require labelled instances for 
training models. Rather, it depends on the agent's associations 
with its surroundings. The fundamental objective of RL is to 
develop the ability to make consecutive choices that exploit a 
long-lasting reward [5]. 
 

The RL problem was classified as a Markov Decision 
Process (MDP) in Puterman [21], where the agent interacts with 
the environment in a sequence of discrete time steps, and at each 
step, it receives feedback in the form of a reward signal. An RL 
problem typically consists of four components: an agent, an 
environment, a reward function, and a policy. The agent takes 
actions based on the current state of the environment and its 
policy, and the environment responds with a new state and a 
reward signal.  Fig.3 below illustrates the action-reward feedback 
loop of a generic RL model. 

 
 
Fig. 3. Reinforcement learning, the goal is to find a suitable action model 
that would maximize the total cumulative reward of the agent [22]. 

RL can be broadly classified into two categories: model-based 
and model-free approaches. Model-based RL involves building 
model of the environment and using it to make decisions. The 
agent learns the optimal behaviour by performing certain actions 
and observing the results, which is made up of the next state and 
the instantaneous reward [23]. In contrast, model-free RL 
algorithms do not require model of the environment. They 
directly learn from experience by estimating the optimal policy 
or value function. Model-free algorithms such as Q-learning, 
Monte Carlo Control, SARSA (State–Action–Reward–State–
Action), Deep Q Network, etc., are widely used in RL [24]. 
 

RL has several applications in biochemistry research, 
including drug discovery and protein structure prediction. RL has 
been used to design small molecules with desirable properties 
such as drug efficacy, solubility, and toxicity. It has also been 
used to optimize the parameters of molecular dynamics 
simulations and to predict protein-ligand binding affinities. In 
drug discovery, RL algorithms can be used to identify new 
compounds that are likely to be effective in treating diseases. In 
protein structure prediction, RL can be used to predict the tertiary 
structure of a protein from its primary sequence [18]. Overall, RL 
is a powerful tool for solving complex problems in biochemistry 
research. 
 
Deep learning 
Deep learning is a specialized subset of machine learning based 
on artificial neural networks composed of multiple layers. The 
layered architecture enables deep learning models to learn 
structured feature representations with hierarchy from raw input 
data. This ability to automatically extract meaningful patterns 
makes deep learning exceptionally adept at working with large, 
complex biochemical data [25]. 
 
Artificial Neural Networks (ANN) 
Artificial neural networks are modelled after the structure and 
function of biological neural networks. They consist of layers of 
artificial neurons that are connected to each other through 
weighted connections. These connections allow information to 
flow through the network, with each neuron receiving input from 
other neurons, processing that input, and passing on its own 
output to other neurons in the network [26]. 
 

The process of training an artificial neural network involves 
adjusting the weights of these connections in order to optimize 
the performance of the network on a given task. This process is 
similar to the way that biological neural networks are "trained" 
through experience and learning, a process called 
backpropagation, which allows the network to adjust its weights 
in response to feedback from the output layer [5]. Graph neural 
networks (GNNs) are a type of ANN that operates on graphs as 
inputs. GNNs have recently been used to learn representations of 
low-dimensional biomolecular networks [27, 28]. For example, 
Ahmed, Park [29] used two different GNN methods to develop a 
GNN that uses gene expression data and a network of genes that 
are expressed together. This network represents the relationship 
between the expression of gene pairs. GNN can also be used in 
prediction of the dynamic property of biochemical pathways 
[30]. 
 
Convolutional Neural Networks (CNN) 
The traditional CNN model is a sophisticated and high-potential 
ANN variation that was created to handle growing degrees of 
complexity as well as data pre-treatment and compilation. It is 
based on how animal brains process visuals, specifically how the 
neurons in our visual cortex are organized [31]. In a CNN, the 
input data is first processed to extract important features, such as 
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edges and shapes. This is done using a series of filters; these 
filters work in stages (Fig. 4), each time focusing on different 
aspects of the data in a more detailed way [32]. These filters are 
similar to how enzymes in a biochemical pathway act to convert 
one molecule into another, from enzyme to enzyme, until the 
final product. 
 

The output of these filters is then further processed to reduce 
the dimensionality of the data. This process of feature extraction 
and reduction continues through multiple layers of the network 
until the final output layer, which produces the desired 
classification or prediction [33]. CNNs are highly effective at 
processing data with and without images because of their ability 
to automatically learn and extract features from the input data 
without the need for manual feature engineering. This makes 
them highly flexible and adaptable to a wide range of 
applications, similar to how enzymes can work on different 
substrates and be used in various biochemical pathways [34]. 

 

 
 

Fig. 4. Convolutional Neural Network demonstrating neural analysis of 
histopathology micrograph. 
 
Recurrent Neural Networks (RNN) 
RNNs are a type of neural network that are well-suited for 
sequence prediction tasks. They work by taking a sequence of 
inputs and predicting the next output in the sequence. RNNs are 
able to do this because they have a memory that allows them to 
remember the previous inputs as illustrated in Fig. 5a. This is in 
contrast to feed-forward neural networks (Fig. 5b), which cannot 
remember previous inputs and can only predict the next output 
based on the current input [35]. 
 

 
 
Fig. 5. The comparison between Recurrent Neural Network (FFNN) (a) 
and Feed-Forward Neural Network (b). It demonstrates in FFNN there is 
only one direction for the data to move, whereas in RNN there is a loop 
[36]. 
 

One of the challenges of using RNNs is that they can be 
difficult to train. This is because they can easily forget 
information about previous inputs, which can lead to errors in the 
predictions. To address this challenge, researchers have 
developed a number of techniques, such as long short-term 
memory (LSTM) networks. LSTM networks are a type of RNN 
that are able to remember information about previous inputs for 
long periods of time. This makes them more accurate for 
sequence prediction tasks [37]. RNN is can be applied in 

predicting associations between biochemical markers and certain 
diseases [38]. 
 
Generative Adversarial Networks (GAN) 
GANs are a deep learning approach that combines a generator 
and a discriminator neural network. The generator creates fake 
data, while the discriminator tries to distinguish between real and 
fake data [39]. The two networks compete with each other, with 
the generator trying to create more realistic fake data and the 
discriminator trying to become better at distinguishing between 
real and fake data. This competition helps both networks to 
improve over time [34]. A good example is ProteinGAN (Fig. 6), 
which has been shown to be able to generate functional protein 
sequences with a high degree of accuracy. It works by training 
two neural networks against each other. The first network, called 
the generator, is responsible for generating protein sequences. 
The second network, called the discriminator, is responsible for 
distinguishing between real and generated protein sequences 
[40]. 
 

 
 
Fig. 6. Protein GAN training scheme. The Generator network creates a 
protein sequence from a random input vector, and the Discriminator 
network scores it by comparing it to real protein sequences. Since the 
generator has never really seen genuine enzyme sequences, it attempts to 
trick the discriminator by creating sequences that will ultimately 
resemble real ones [40].  
 
GANs can be used to generate new molecules that have the 
potential to be new drugs. This can be done by generating 
molecules that are similar to known drugs, or by generating 
molecules with new properties that could be useful for treating 
diseases [20]. GANs can be used to improve the quality of 
biomedical images, such as by removing noise or enhancing 
contrast. This can be used to help researchers make better 
diagnoses and develop new treatments for diseases [41]. 
 
Natural Language Processing (NLP) 
NLP encompasses various computational techniques that involve 
the representation, transformation, or utilization of text, speech, 
and other forms of data. This means that a broad range of tasks 
can be considered as NLP activities, including extracting relevant 
information from scientific literature, analysing and summarizing 
research papers, and generating hypotheses based on textual data. 
NLP has a variety of applications in analysing scientific literature 
[42]. One major application is the identification of trends in 
research, relevant research papers, and the summarization of their 
findings [43]. Additionally, NLP can be used to generate 
hypotheses based on scientific literature [42], which can be 
helpful for researchers who are looking to explore new areas of 
research. Also, NLP could be used to enhance clinical trial 
research, and facilitating inter-country/region and inter-
institution collaborations [44]. Another way NLP can be used in 
science is by communicating scientific findings to the public 
[42]. 
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Applications of AI in Biochemistry Research 
 
Artificial intelligence is enabling breakthroughs across key 
domains in biochemistry including drug discovery, protein 
structure prediction, genomics, metabolomics, and proteomics. 
By assisting with critical tasks like drug design, sequence 
analysis, and spectral metabolite identification, AI holds 
enormous promise for accelerating discoveries in biochemistry. 
 
Drug discovery and development 
The lengthy, complex, and costly process of discovering and 
developing new drugs is being transformed by the integration of 
artificial intelligence techniques across the pipeline (Fig. 7). 
Utilization of AI in drug discovery and development span from 
designing or optimizing drug candidate molecules using 
generative models, to repurposing existing therapeutics by 
predicting new protein targets, to improving clinical trial 
efficiency through patient selection and adverse event detection, 
to providing early predictions on drug safety and toxicity to 
reduce late-stage failures [34]. By enhancing molecular design, 
preclinical screening, clinical testing, and other aspects, the 
synergy between AI and the drug development process holds 
promise to increase the speed and reduce the costs associated 
with bringing new medicines to market [45]. 
 

 
 
Fig 7. Drug development process showing the application of AI at each 
stage [45]. 
 
Drug discovery 
Various AI models have been developed to design new drugs 
from scratch without using information from existing drugs [46]. 
Unfortunately, these de novo methods are not as popular as other 
drug design methods that are based on the structures of existing 
drugs. These de novo methods generate drugs that can be hard to 
make. One model is the variational autoencoder which has two 
neural networks: an encoder and a decoder [46]. The encoder 
translates a drug's Simplified Molecular Input Line Entry System 
(SMILES) code into a continuous vector. The decoder then 
translates that vector back into a SMILES code, which usually 
represents a similar drug. Researchers compared this model to an 
adversarial autoencoder [47].  
 

Adversarial autoencoders have a model that can generate 
new chemical structures [48]. One study used this model to find 
new drugs that could target dopamine receptor type 2. Another 
used a generative adversarial network to find new anticancer drug 
candidates [49]. De novo drug design has also been done using 
RNNs. RNNs were initially employed for NLP, where they 
process sequential data. RNNs can create novel chemical 

structures since SMILES codes encode chemical structures as 
letter sequences. To learn how to create SMILES codes, RNNs 
are trained on vast datasets like ChEMBL or commercial drug 
databases [50]. New peptides have been produced using this 
method. The produced molecules have been biased to have 
particular characteristics using RL. Transfer learning has also 
been used to create medications with particular biological effects 
by transferring knowledge from one model to another. Different 
machine learning methods have been developed to investigate 
uncharted chemical territory and produce novel drug-like 
compounds [51]. 
 
Drug repurposing 
We can find already available, FDA-approved medications that 
may interact with and limit the activities of proteins from new 
viruses like SARS-CoV-2 using AI and deep learning techniques 
like AlphaFold, which can predict 3D protein structures from 1D 
amino acid sequences [52]. Beck, Shin [53] developed a machine 
learning model called MT-DTI that can predict how strongly 
drugs and proteins may bind to each other based only on the 
chemical makeup of the drugs and amino acid sequences of the 
proteins. Using this model, they were able to identify several 
existing antiviral drugs, such as atazanavir, remdesivir, efavirenz, 
ritonavir, and dolutegravir, which MT-DTI predicted would 
inhibit a key protein called SARS-CoV-2 3C-like proteinase.  

 
These drugs could potentially be repurposed as treatments 

for COVID-19 and further tested in clinical trials. However, it is 
important to note that while these computational predictions 
show promise, experimental validation through in vitro and in 
vivo studies is still necessary to confirm the actual efficacy and 
safety of these drugs against SARS-CoV-2 before advancing to 
human trials. MT-DTI allows researchers to discover potential 
new uses for existing drugs without needing the 3D structures of 
the drug targets [52]. 
 
Clinical development 
AI algorithms can be used in clinical development to improve the 
likelihood of success in clinical trials, optimize trial design, 
detect adverse events, and improve the efficiency of data 
collection and analysis [54]. By analysing patient data and 
biomarkers, AI can identify patients more likely to respond to a 
particular therapy, reduce the number of patients needed for 
clinical trials, and improve patient safety. Automating data 
collection and analysis can also reduce errors and accelerate the 
clinical development process [55]. 
 
Toxicological studies 
AI techniques like predictive toxicology modelling using 
machine learning (PTML) are being applied to gain insights into 
drug toxicity and accelerate drug development. PTML can help 
understand why drugs fail preclinical studies and redesign them 
to be safer, identify the most promising candidates earlier, predict 
how structural changes may impact toxicity, reduce animal 
testing, and streamline the overall drug development process 
[56]. 
 
Protein Structure Prediction 
 
The protein folding problem 
The notion of a folding “problem” first emerged around 1960, 
with the appearance of the first atomic-resolution protein 
structures [57]. Since then, three distinct issues have been 
identified with the protein folding problem: (a) Understanding 
the thermodynamic forces that stabilize a protein's native 
structure for a given amino acid sequence, including the 
equilibrium between interatomic interactions that defines a 
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protein's fold; (b) Developing computational methods to predict 
a protein's three-dimensional structure directly from its one-
dimensional amino acid sequence; (c) Elucidating the kinetics of 
how proteins are able to fold rapidly into their native states, 
analysing the mechanisms and transition pathways involved [58]. 
Protein folding process has puzzled scientists for decades. One 
reason for this is the enormous number of possible 3D shapes that 
a protein chain can fold into before achieving the correct 
conformation. In 1969, molecular biologist Cyrus Levinthal 
estimated that a single protein could fold into 10300 
conformations. Given the vast number of possibilities, it would 
seem mathematically infeasible for proteins to explore all 
potential conformations through random searching until they 
stumble upon the correct shape, yet, proteins consistently and 
efficiently adopt their functional structure in a fraction of a 
second, a phenomenon known as Levinthal's Paradox [59]. 
 

Analysing a protein's structure is crucial to understanding its 
function, but the current techniques require crystallized proteins. 
This approach is not ideal for hydrophobic membrane proteins 
that aggregate in water and are difficult to crystallize. This is 
where computational models come in. The development of AI-
powered tools that can accurately predict and visualize protein 
structures could revolutionize the field by expanding our 
understanding of 3D protein structures and bridging the gap 
between 1D and 3D protein analysis [60]. 
 
Critical Assessment of Structure Prediction (CASP) 
The Critical Assessment of Techniques for Protein Structure 
Prediction (CASP) is a biennial competition that aims to evaluate 
and improve the accuracy of computational methods for 
predicting the 3D structure of proteins. CASP was established in 
1994 and has since become one of the most prominent and 
influential scientific competitions in the field of bioinformatics 
and structural biology [60]. 
 

The idea behind CASP is to provide a platform for 
researchers to test and compare their computational methods for 
predicting protein structures against experimental data. During 
the competition, participants are provided with amino acid 
sequences for a set of proteins whose structures have not yet been 
experimentally determined. The participants use computational 
methods, such as homology modelling, molecular dynamics 
simulations, and fragment assembly, to predict the 3D structure 
of the protein. The predictions are then compared to the 
experimentally determined structures, which are released after 
the competition. 
 

The primary measure used to evaluate the accuracy of 
computational models is the Global Distance Test (GDT), which 
ranges from 0 to 100 (Fig 8). It represents the percentage of 
amino acid residues that fall within a certain distance of the 
correct position, with the experimental structures serving as the 
"ground truth", with values above 80% denoting that local and 
global details are mostly modelled accurately and values below 
20% denoting mostly random models. Moult has stated that 
achieving a GDT score of approximately 90 is comparable to 
experimental methods [61].  
 

There are two approaches to developing computational 
methods for the protein folding problem. One is based on 
physical interactions and leverages our understanding of 
molecular driving forces. The other approach is rooted in 
evolutionary analysis and uses bioinformatics to study the 
evolutionary history of proteins [7]. 
 
 

 
 
Fig. 8. The global distance test illustrated. The closer the predicted model 
is to the empirical model, the higher the GDT score. 
 
AI in protein folding prediction 
Historically, the GDT scores at CASP have typically been around 
60 [61]. However, in 2020, Google's DeepMind unveiled 
AlphaFold 2.0, which managed to achieve an impressive average 
GDT score of 90 at CASP14 [7].  Fig 9. below is the CASP 
median free modelling category over the years showing the best 
model GDT score. 
 

 
Fig 10. CASP median free modelling category over the years showing 
the best model GDT score [7]. 
 

In 2018, DeepMind achieved a high GDT score in CASP13 
and a median score of approximately 70-75 using the first version 
of AlphaFold, which combined local physics and pattern 
recognition. An improvement in accuracy was observed after 
incorporating deep learning methods for contact prediction but 
often overestimated the impact of interactions between nearby 
residues [62]. DeepMind subsequently developed AlphaFold 2.0, 
a model that relies exclusively on pattern recognition and uses 
both physical and evolutionary constraints in its predictions [63].  

 
The architecture is an attention-based neural network 

combined with a deep learning framework [7], that treats the 
prediction process like assembling a Lego set, where smaller 
sections of set, in this case, amino acids are connected before 
being joined together to form the built Lego set or the 3D protein 
structure. To train the network, DeepMind used a dataset 
consisting of 170,000 protein structures from the Protein Data 
Bank and 350,000 sequences from UniClust, with high-
confidence predictions combined with PDB data to create a new 
dataset for further training [60].  

 
AlphaFold uses an iterative process to refine its predictions, 

with an internal measure called pLDDT based on the Local 
Distance Difference Test (LDDT) to assess reliability by 
comparing local distances of atoms in computational models to 
experimentally determined structures. This system allows 
AlphaFold to improve its predictions and produce more accurate 
structures [7].  
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To improve its predictions, AlphaFold uses an iterative 
process and relies on an internal measure called the predicted 
Local Distances Difference Test (pLDDT), which assesses the 
reliability of its predictions by comparing the local distances of 
atoms in computational models to experimentally determined 
structures [64]. This metric assigns high scores to regions with 
high local accuracy, regardless of the accuracy of the entire 
predicted protein, allowing AlphaFold to refine its predictions 
and achieve more accuracy. In the recent CASP14 experiment, 
AlphaFold achieved a median score of 92.4 GDT, with an 
average error within the width of one atom [60]. 
 

RoseTTAFold, developed by a team led by David Baker, 
and was one of the top-performing programs in the latest 
CASP14, uses deep learning techniques to predict the structure 
of proteins. However, it employs a different approach to achieve 
this goal. Rather than relying solely on amino acid sequence data, 
RoseTTAFold combines sequence data with structural data, such 
as the positions of atoms within the protein. This allows the 
program to more accurately predict the folding of the protein. 
One of the unique features of RoseTTAFold is its ability to 
predict the structures of protein complexes. This is a significant 
advantage over AlphaFold, which is currently limited to 
predicting the structures of individual proteins. Additionally, 
RoseTTAFold can predict the structures of proteins containing 
cofactors or metals with an accuracy of 80%, which are not 
included in AlphaFold's predictions [65]. 
 
Genomics and Transcriptomics 
 
Gene expression analysis 
AI plays a crucial role in gene expression analysis, which 
involves studying the activity of genes in a given tissue or cell. 
By leveraging AI algorithms, researchers can analyse large-scale 
genomics data, such as RNA sequencing (RNA-seq) data, to 
understand gene expression patterns and identify differentially 
expressed genes [66]. AI-based approaches can help in 
identifying gene signatures associated with specific diseases or 
conditions such as cancer, allowing for better diagnosis and 
prognosis [67]. These methods can also assist in identifying 
potential therapeutic targets or biomarkers for various diseases. 
 
Sequence alignment and classification 
AI techniques are widely used in sequence alignment and 
classification tasks in genomics and transcriptomics [68]. 
Machine learning algorithms, including support vector machines 
(SVMs) and deep learning models, are employed to classify 
sequences based on their features, such as sequence motifs or 
structural properties [20]. 
 
Metabolomics and proteomics 
Metabolomics and proteomics are being revolutionized by AI by 
enabling efficient and accurate identification of metabolites and 
proteins. AI algorithms like deep neural networks and support 
vector machines have been used to analyse mass spectrometry 
data and identify patterns, leading to breakthroughs in disease 
diagnosis and treatment. 
 
Metabolite identification 
AI has revolutionized the field of metabolomics by enabling 
efficient and accurate identification of metabolites in complex 
biological samples. Metabolite identification involves matching 
experimental data, such as mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) spectra, with reference databases to 
determine the chemical identity of metabolites [69]. Deep neural 
networks, such as CNNs have been utilized for metabolite 
identification. This model analysed MS or NMR spectra and 

learned complex patterns and features to accurately identify 
metabolites [70]. Deep generative models, such as variational 
autoencoders (VAEs) and GANs have been used to generate 
synthetic metabolite spectra. These models learn the underlying 
distribution of metabolite spectra and can be used for metabolite 
identification by comparing experimental spectra with synthetic 
ones [71]. 
 
Protein identification and quantification 
AI has made significant contributions to protein identification 
and quantification in proteomics research. CNNs have been 
employed to accurately identify proteins from MS data. These 
models can handle large-scale datasets and provide highly 
accurate protein identification results [72]. Additionally, AI 
algorithms enable the quantification of proteins in complex 
mixtures. Machine learning techniques, such as support vector 
regression and random forest regression, have been used to 
estimate protein abundances based on spectral counts or peptide 
intensities [73]. These models learn patterns and correlations in 
the data, allowing for accurate protein quantification even in the 
presence of noise or missing values. 
 
Pathway analysis 
Machine learning performs and important role in pathway 
analysis, which aims to understand the interactions and 
relationships between metabolites, proteins, and other molecules 
within biological pathways [74]. By integrating metabolomics 
and proteomics data with existing pathway databases, Deep 
learning algorithms can predict and analyse metabolic and 
signalling pathways, helping to elucidate the underlying 
mechanisms of diseases and identify potential drug targets [75]. 
AI-based pathway analysis can uncover complex network 
interactions, identify key regulatory nodes, and provide insights 
into how specific disturbances impact cellular processes [74]. 
 
Disease Diagnosis and Treatment 
 
Medical image analysis 
AI can be used to analyse medical scans and detect anomalies. 
For example, AI systems can detect tumours, lesions and other 
abnormalities in CT scans, X-rays and MRI images [76]. AI can 
also analyse retinal scans to detect eye diseases [77]. 
 
Natural language diagnosis 
AI systems can analyse written or spoken symptoms described 
by patients to determine the possible diagnosis or conditions. The 
systems compare the symptoms to a large database of diseases 
and disorders to provide possible matches [78]. Some companies 
are developing 'chatbots' to converse with patients and get 
additional details about symptoms to improve diagnosis [79]. 
 
Clinical decision support system 
AI systems can analyse medical records, test results, symptoms 
and other data to provide decision support for physicians. The 
systems can detect possible conditions that match the patient's 
data and provide a list of recommended tests or treatments. Some 
AI systems can also analyse how physicians make decisions and 
detect potential biases or errors [80]. The systems aim to enhance 
human expertise, not replace physicians. 
 
Challenges and Limitations of AI in Biochemistry Research 
 
Although AI has shown great promises, there are still challenges 
and limitations to address, some of which include, availability of 
data, interpretability of results, ethical considerations and 
generalization and overfitting. 
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Availability of data 
In order to fully harness the potential of AI in biology, it is 
important to develop technologies that can automatically collect 
biological data from various sources such as images, videos, and 
molecular profiles. However, the quality of the data collected is 
equally important, and data scientists must work with biologists 
to ensure that the data is accurate and reliable. This involves 
identifying and mitigating biases, understanding variations, and 
improving signal-to-noise ratios. To facilitate data sharing, tools 
should be developed that allow for transparent data sharing while 
also taking into consideration issues of security, privacy, and 
fairness.  
 

High-quality reference datasets are also crucial for 
benchmarking AI applications in biology. The ImageNet dataset 
has served as a benchmark for AI methods in image processing, 
and similar reference datasets will be needed for AI applications 
in biology. Sharing data and developing reference datasets will 
allow researchers to form new hypotheses and build new 
theories, leading to further advancements in the field of AI and 
biochemistry [81]. 
 
Interpretability of results 
AI models are often complex and difficult to understand, making 
it challenging to explain how they arrive at a particular decision. 
Interpretability tools and techniques are designed to help humans 
understand and interpret these models. For example, one 
approach is to visualize the model's decision-making process by 
generating heatmaps that highlight the regions of an image that 
contributed most to a particular classification. Another approach 
to interpretability is to generate feature importance scores that 
rank the importance of different input features in making a 
particular prediction. This can help identify which features are 
most relevant to the decision and provide insight into how the 
model works [82]. 
 
Generalization and overfitting 
The goal of any machine learning model is to learn patterns in the 
training data that can be applied to new, unseen data. A model 
that has good generalization will be able to accurately predict 
outcomes on new data, even if the new data is different in some 
way from the training data. Good generalization is essential for 
creating models that are useful in real-world applications. 
However, overfitting, occurs when a model becomes too 
complex and begins to fit the noise in the training data, rather 
than the underlying patterns. This can result in a model that 
performs very well on the training data but poorly on new, unseen 
data. Overfitting can occur when a model is too complex for the 
amount of data available, or when the model is trained for too 
many iterations [83]. 
 

To avoid overfitting and promote generalization, machine 
learning practitioners use techniques such as cross-validation, 
regularization, and early stopping. These techniques help to 
prevent models from becoming too complex and overfitting the 
training data. Additionally, increasing the amount of training data 
can also help to improve generalization by giving the model more 
examples to learn from [83]. 
 
Ethical considerations 
The use of AI in biochemistry research presents several ethical 
considerations. One of the main concerns is the potential for bias 
in the data used to train the AI models. Biases can arise from 
many sources, including the selection of data sets, the methods 
used to collect the data, and the algorithms used to analyse the 
data. If these biases are not addressed, they can lead to inaccurate 
predictions or perpetuate existing inequalities [84]. 

Another concern is the potential for AI to replace human 
expertise in biochemistry research. While AI can certainly help 
scientists process and analyse large amounts of data more quickly 
than humans can, it is not a substitute for the expertise and 
intuition of human researchers. In addition, the use of AI in 
research may also raise questions about the nature of scientific 
discovery and the role of human creativity in scientific 
breakthroughs [85]. 
 

Another ethical consideration with the use of AI in 
biochemistry research is the potential impact on data privacy and 
security. As more data is collected and analysed using AI, there 
is a risk that sensitive information about individuals, such as 
genetic information or health data, could be compromised. 
Scientists must be diligent in their efforts to protect data privacy 
and security while still making use of the vast amounts of data 
available [81]. 
 

Finally, there is a concern about the potential misuse of AI 
in biochemistry research. For example, AI could be used to 
develop new and more dangerous biological weapons, or it could 
be used to perpetuate existing inequalities in access to healthcare 
or genetic testing. As AI technology continues to advance, it will 
be essential for scientists, policymakers, and society as a whole 
to consider the potential risks and benefits and to develop ethical 
guidelines for the responsible use of AI in biochemistry research 
[86]. 
 

Addressing ethical issues related to AI must be considered 
a top priority in biochemistry research. It is crucial that 
developers and users receive proper training and education to be 
aware of these issues. Moreover, it is essential to ensure diversity 
in the workforce to prevent exclusion and ensure that everyone 
benefits from the advancements in AI technology. As we 
continue to use AI in biochemistry, we must remain vigilant to 
prevent any potential misuse of this technology, which could lead 
to harm to individuals or the environment. It is essential to take 
appropriate measures to evaluate and address these ethical 
concerns carefully [87]. 
 
CONCLUSION 
 
The application of AI in biochemistry research has been 
transformed by the way complex biological problems are 
approached. Vast amounts of data with incredible speed and 
accuracy have been analysed. New avenues of exploration and 
discovery that were once unimaginable have been opened up. 
From drug discovery to protein structure prediction, genomics to 
metabolomics, the impact of AI on biochemistry research has 
been undeniable. However, the adoption of AI in biochemistry 
research has not been without its challenges. Data quality and 
curation, algorithmic transparency, and ethical considerations are 
all important factors that need to be addressed as move forward. 
Nonetheless, the opportunities presented by AI are too significant 
to be ignored, and the future of biochemistry research 
undoubtedly lies in the integration of these powerful 
computational tools. As the possibilities of AI in biochemistry 
research continue to be explored, it is important to remember that 
the ultimate goal is to improve human health and well-being. By 
leveraging the power of AI to understand the complex processes 
that underlie life, more effective therapies and interventions can 
be developed to tackle some of the world's most pressing health 
challenges and further the understanding of biochemical 
processes. 
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