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INTRODUCTION 
 
Organonitrile are a class priority pollutant that have a wide range 
of toxic effects on all levels of life, including humans. They are 
equally known to be extremely carcinogenic and mutagenic [1–
3]. Acetonitrile, acrylonitrile, and benzonitrile are common 
examples of these compounds, which are widely used in 
laboratories and industries as solvents and extractants, or as an 
ingredient in pharmaceuticals, plastics, synthetic rubbers, drug 
intermediates (chiral synthons), herbicides and pesticides (e.g., 
dichlobenil, bromoxynil, ioxynil, buctril), and so on [4–6]. As a 
result, organonitrile compounds are frequently present in the 
effluents from these applications, which makes it difficult to 
degrade or detoxify these compounds in wastewater. 
Investigating technology and techniques that can efficiently treat 
these substances before they are safely released into the 
environment or combined with other wastewater for further 

treatment is therefore of significant research and practical 
importance. 
 

Ozone and photocatalytic oxidation are two examples of 
chemical treatments that can be used to remediate these 
pollutants, however due to their severe reaction conditions, 
production of secondary pollutants, and high operational costs, 
these approaches are frequently not the best option [7,8]. 
According to studies [9,10], the ecologically beneficial 
technology of bioremediation has the potential to remove these 
substances by converting them into harmless intermediates or, 
eventually, carbon dioxide and water. Many researchers have 
investigated the microbial degradation of acetonitrile and their 
derives chemicals using various isolates, such as Nocardia 
rhodochrous [11], Pseudomonas putida [3], Rhodococcus sp. N 
774 [12], Corynebacterium sp. C5 [13],  Rhodococcus 
rhodochrous PA-34 [14], Pseudomonas marginalis [15], R. 
erythropolis BL1 [16], Rhodococcus erythropolis A10 [17], 
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 ABSTRACT 
As the most pristine and one of the biggest continents in the southern hemisphere, Antarctica has 
over the decade accumulated hydrocarbon pollution mainly due to human activities related to 
logistics and transportation in this area. Acetonitrile spills caused by the sinking of the cargo 
ships call for research into acetonitrile-degrading microorganisms in the form of bioremediation 
in order to be ready for disasters in the future. The efficiency of a previously isolated acetonitrile-
degrading sludge consortium as a bioremediation technique has been demonstrated. However, as 
the acetonitrile concentration rises, its growth was severely restrained. Acetonitrile's inhibitory 
effect on this consortium's development rate is modeled in this work using the Luong, Aiba, 
Haldane, Hans-Levenspiel, Yano, Teissier and Monod models. Statistical evaluations indicated 
that the most suitable kinetic model to fit the growth rate on acetonitrile was the Teissier-
Edwards’s model. The computed values for the Teissier constants like maximal reduction rate 
(µmax), half saturation constant for maximal degradation (Ks) and half inhibition constant (Ki) 
were 0.934 1/H (95% confidence interval 0.301 to 1.567), 1.504 g/L (95% confidence interval 
0.877 to 2.131), and 4.574 g/L (95% confidence interval 2.764 to 6.383), respectively. The 
parameters obtained from this study will be beneficial in acetonitrile biodegradation works. 
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Cryptococcus sp. UFMG-Y28 [18], Brevibacterium imperalis 
CBS489-74 [19], Candida guilliermondii CCT 7202 [20], 
Comamonas testosteroni and Acidovorax sp. [21], Paracoccus 
thiophilus [22], Kluyveromyces thermotolerans MGBY 37 [23] 
and Klebsiella oxytoca [5]. Despite the fact that isolated 
microorganisms may have a promising potential to degrade the 
toxic organonitrile compounds, it may possibly be more practical 
to use a mixed culture (a consortium) for the remediation or 
degradation of these toxic chemicals. 

 
The relation between the specific growth rate (µ) of a 

population of microorganisms and the substrate concentration (S) 
is a valuable tool in biotechnology. The growth-linked substrate 
utilization rate has been extensively described using the Monod 
equation [24,25]. The original Monod model, however, was 
inapplicable when a substrate, like acetonitrile, showed strong 
inhibition toward its own biodegradation. Instead, a derivative of 
this model with additional constants that offered substrate 
corrections have been developed. For this work, a number of 
microbial growth and biodegradation kinetic models are 
available. Numerous literatures generalize the use of the Haldane 
model to model substrate inhibition to growth or degradation 
rate. This is despite the fact that several other models have been 
shown to be more accurate for a single substrate-inhibiting 
compound, such as phenol. Aside from the commonly reported 
Haldane model [26], numerous other models such as Edward [27] 
and Luong [28,29] have been found to be optimal. As a result, in 
some cases using comprehensive models instead of the Haldane 
might be appropriate. The exclusive use of the Haldane model 
should not be applied indiscriminately without properly fitting 
these other models to the available growth or degradation rate 
data and appropriate statistical evaluation. 

 
The growth kinetics of an acetonitrile-degrading consortium 

was not previously determined using various inhibitory growth 
kinetic models. This research is being done to assess how well 
these models can be used to predict the effect of acetonitrile on 
this consortium's growth rate. 

 
 
MATERIALS AND METHODS 
 
Source of data 
 
The software Webplotdigitizer 2.5 [40], which digitizes figures 
and has been widely used and praised for its dependability [41–
44] was used to analyze previously published data [45].  
  
Fitting of the data 
Nonlinear regression with a Marquardt algorithm that minimizes 
sums of squares of residuals was used to fit the nonlinear 
equations to the growth data using CurveExpert Professional 
software (Version 1.6). The goal of this search strategy is to 
reduce the sum of the squares of the variations between the 
predicted and measured values. 
 
Statistical analysis 
 
Using the same set of experimental data, models with different 
numbers of parameters were compared to one another to see if 
there was a significant difference in terms of fitness. Statistics 
functions such as adjusted coefficient of determination (R2), 
Root-Mean-Square Error (RMSE), corrected AICc (Akaike 
Information Criterion), bias factor and accuracy factor (BF, AF), 
were used. Table 1 shows the various growth inhibition kinetics 
models that are available.  
 

Table 1. Various mathematical models developed for degradation 
kinetics involving substrate inhibition.  
 
Author 
 

Degradation Rate Author 

Monod  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 

 
[30] 

Haldane  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�

 

 
[31] 

Teissier 
µ𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[32] 

Aiba 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[33] 

Yano and Koga µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[34] 

 
Han and 
Levenspiel 
 

 

µ𝑚𝑚𝑚𝑚𝑚𝑚 �1

− �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[35] 

 
 
Luong 

µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[36] 

Moser µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛
 

[37] 

Webb µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[38] 

Hinshelwood 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

�1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 
[39] 

   
Note: 
µmax  maximal specific growth rate 
Ks   half saturation constant 
Ki   inhibition constant 
Sm   maximal concentration of substrate tolerated 
Kp  product inhibition constant 
m, n, K curve parameters 
S  substrate concentration 
P  product concentration 

 
Equation 1 was used to determine the RMSE, which is a 

penalty for having too many parameters. Here, n represents the 
number of experimental data, p represents the number of 
parameters generated by the model, and the experimental data 
and values projected by the model are, respectively, Obi and Pdi 
[46]. 
 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
                                                (Eqn. 1) 

 
In linear regression, the best fitting model was determined 

by R2 or coefficient of determination. However, in nonlinear 
regression, the R2 does not give a comparative analysis where the 
number of parameters between models is different. To overcome 
this, adjusted R2 was used to calculate the quality of the nonlinear 
models. In the adjusted R2 formula, 𝑆𝑆𝑦𝑦2 is the total variance of the 
y-variable and RMS is Residual Mean Square.  
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑌𝑌2
                                           (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

                                (Eqn. 3) 
 

The Akaike Information Criterion (AIC) can be used to 
compare the relative quality of various statistical models for a 
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given set of experimental data. Instead, for data sets with many 
parameters or few values, the corrected AIC, AICc, should be 
used [47]. The following Eqn. 4 was used to compute the AICc. 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑒𝑒 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑒𝑒 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
      (Eqn. 4) 

 
AICc provides details on the differences in parameter counts 

and model fitting between two models. The best match between 
the models would be shown by the AICc value that is the least 
[47]. Another statistical approach based on information theory, 
in addition to AICc, is the Bayesian Information Criterion (BIC) 
(Eqn. 5). More so than AIC, this error function penalizes the 
quantity of parameters [48]. 
 
 
𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑘𝑘. ln (𝑛𝑛)                                        (Eqn. 5) 

 
 

A further error function method based on the information 
theory is the Hannan–Quinn information criterion (HQC) (Eqn. 
6). The HQC is strongly consistent unlike AIC due to the ln ln n 
term in the equation [49] 
 
 
𝐻𝐻𝐻𝐻𝐴𝐴 = 𝑛𝑛 × 𝑙𝑙𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑘𝑘 × 𝑙𝑙𝑛𝑛(ln𝑛𝑛)                      (Eqn. 6) 

 
The models' goodness-of-fit was evaluated using BF and 

AF. To achieve a perfect match between the predicted and 
observed values in biodegradation, the Bias Factor should be set 
to 1. A Bias Factor (Eqn. 7) value greater than one indicates a 
fail-safe model, while a Bias Factor less than one indicates a fail-
negative model. The value of Accuracy of 1 indicates a less 
precise prediction (Eqn. 8).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�                 (Eqn. 7) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�        (Eqn. 8) 

 
 
RESULTS AND DISCUSSION 
 
In this work, ten distinct growth models (Figs. 1 to 6) were 
utilized to fit the experimental data of [45]. The Monod model's 
flaw is that it ignores the unique regulatory complexity, variable 
response to environmental circumstances, and ability of bacteria 
to produce a variety of products and by-products in their natural 
metabolism. The Teissier model, which had the greatest adjusted 
R2 values, the lowest values for RMSE and AICc, the lowest F-
test values, and the Bias Factor and Accuracy Factor values that 
were closest to unity (1.0), was the most accurate and statistically 
significant of the kinetic models used (Table 2). Neither did the 
Aiba, Han-Levenspiel, Moser, nor Monod models converge.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 1. Substrate inhibition kinetic on acetonitrile as modelled using the 
Luong model.  
 

 
 
Fig. 2. Substrate inhibition kinetic on acetonitrile as modelled using the 
Yano model.  
 
 

 
 
Fig. 3. Substrate inhibition kinetic on acetonitrile as modelled using the 
Hinshelwood model.  
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Fig. 4. Substrate inhibition kinetic on acetonitrile as modelled using the 
Webb model.  
 

 
Fig. 5. Substrate inhibition kinetic on acetonitrile as modelled using the 
Haldane model.  
 

 
Fig. 6. Substrate inhibition kinetic on acetonitrile as modelled using the 
Teissier-Edward model.  
 
Table 2. Statistical analysis of the various fitting models. 
 
Model p RMSE adR2 AICc BIC HQC BF AF 
Luong 4 0.05 0.82 -6.91 -46.59 -49.05 1.06 1.11 
Yano 4 0.02 0.98 -23.26 -62.95 -65.41 1.01 1.04 
Tessier-Edward 3 0.02 0.98 -43.21 -64.31 -66.16 1.01 1.05 
Aiba 3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Haldane 3 0.02 0.95 -35.75 -56.85 -58.69 1.04 1.08 
Monod 2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Han and 
Levenspiel  5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Moser 3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Hinshlewood 4 0.11 n.a. 7.27 -32.41 -34.87 1.01 1.32 
Webb 4 0.03 n.a. -16.20 -55.88 -58.34 1.04 1.08 
Note: 
p  no of paramaters 
RMSE  Root Mean Square Error 
Ra2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
n.a.  not available (model not converged) 
 

The computed values for the Teissier constants like 
maximal reduction rate (µmax), half saturation constant for 
maximal degradation (Ks) and half inhibition constant (Ki) were 
0.934 1/h (95% confidence interval 0.301 to 1.567), 1.504 g/L 
(95% confidence interval 0.877 to 2.131), and 4.574 g/L (95% 
confidence interval 2.764 to 6.383), respectively. However, the 
genuine µmax should occur where the gradient for the slope is 
zero, and in this case, the µmax value produced by curve fitting 
interpolation was around 0.363 1/h at 2.49 g/L acetonitrile. The 
Teissier equation using the values obtained from fitting is as 
follows; 
 

µ = 0.363�1−𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆

4.574
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
1.504�� 

 
Due to the shortcomings of earlier models like Haldane, 

Andrews and Noack, Web, and Yano, which were unable to 
explain some rare scenarios when growth rate turned zero at very 
high substrate concentration, models like Luong, Teissier, and 
Hans-Levenspiel were developed [50]. In some circumstances, at 
high substrate concentrations, the substrate itself, as a result of its 
repressive and toxic properties, inhibits microbial growth rate. To 
date, the majority of the Luong model reported for microbial 
degradation of xenobiotics has focused on phenol-degrading 
bacteria [28,51,52] and molybdenum-reducing consortium 
[53,54]. Perhaps, this the first work to model the degradation of 
acetonitrile using bacterial consortium. 
 
CONCLUSION 
 
A complete cessation of maximum growth to the growth rate of 
the Antarctic Sludge Consortium was observed in this study, and 
the use of various kinetics models in coupled with a thorough 
statistical treatment of the model suggests that the Luong model 
was superior to the widely used Haldane model in fitting the 
growth rate at various acetonitrile concentrations. The maximum 
substrate concentration at which growth rate completely stops 
can be predicted using the Luong model. 
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