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INTRODUCTION 
 
Nitrogen is the most important nutrient for plant development 
and production in agribusiness[1]. To sustain life, it is one of the 
most crucial elements; a primary source for protein, nucleic acid, 
and other organic nitrogeneous substances synthesis. 
Chemically, nitrogen fixation occurs when airborne molecular 
nitrogen (N2) is transformed into ammonia (NH3) or other 
nitrogen compounds, most often in soil or aquatic systems [2], 
although it may also be used for industrial purposes. Most 
microbes can't utilise atmospheric nitrogen since it is molecular 
dinitrogen, an inert and nonreactive chemical. Nitrate is 
converted to ammonia (NH3) by the nitrogenase protein complex 
in a microbiological process known as diazotrophy or nitrogen 
fixation (Nif)[3]. In contrast, the process of nitrogen 
mineralization in the soil is relatively sluggish, accounting for 
just one to three percent of the total soil nitrogen[4].  
 

There appears to be a large number of heterotrophic bacteria 
living in soil, and these bacteria appear to be responsible for 
major nitrogen reductions [5]. One of the most significant 
microorganisms in agricultural soil is the nitrogen-fixing bacteria 
(also known as nitrobacteria) [6]. Certain species of 
Enterobacter, Azospirillum, and Pseudomonas have been shown 
to be mutualistic or symbiotic with diverse types of plants, 
including Frankia, Rhizobium, and certain Azospirillum and 
Enterobacter strains [7]. Soil microorganisms known as 
diazotrophs, including bacteria such as Azotobacter and archaea, 
fix nitrogen organically. Plant groupings, particularly legumes, 
have symbiotic partnerships with nitrogen-fixing bacteria. When 
nitrogen is fixed by rice roots, the link between diazotrophs and 
plants is sometimes referred to as associated relationship pr 
symbiotic. Some termites and fungi are able to fix nitrogen via a 
process known as nitrogen fixation. [8] Lightning-induced NOx 
emissions cause it to spontaneously arise in the atmosphere. 
Because of their capacity to convert nitrogen from the 
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 ABSTRACT 
Nitrogen is a critical component of biological systems and typically serves as a constraint on 
production in both aquatic and terrestrial environments, although its shortage has been 
compensated for through the process of biological nitrogen fixation. Nitrogen fixation is a critical 
microbial activity that utilises nitrogenase enzymes to convert dinitrogen (N2) gas to ammonia 
(NH3). It is carried out by a diverse spectrum of bacteria known as nitrogen fixing bacteria. These 
include free-living bacteria such as Azotobacter, Bacillus, Beijerickia, and Clostridium, 
associative bacteria such as Azospirillum, Enterobacter, and Pseudomonas, and bacteria that form 
symbiotic associations with legumes such as Rhizobium and actinorrhizal plants such as Frankia. 
These bacteria contribute significantly to plant growth by producing phytohormones (such as 
auxins, cytokinins, gibberelins, and indole acetic acid), reducing the incidence of plant diseases 
through the production of siderophores and cell wall degrading enzymes, and increasing 
phosphorus nutrition via phosphate solubilization. Additionally, they remove heavy metal ions 
from solutions through a process called biosorption, which is a feasible, natural, environmentally 
benign, and economically viable technique of remediating heavy metal-contaminated 
environments. 
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atmosphere into a form that plants can utilise, these bacteria are 
among the most well-known [9]. As a result, it is imperative that 
the world's resources are tapped as quickly as possible, and the 
process of biological nitrogen fixation is a key component. A 
method for converting atmospheric nitrogen into fixed nitrogen 
is biological nitrogen fixation [10].  

 
Bacteria that fix nitrogen facilitate this transition [11]. Many 

nitrogen-fixing bacteria have been isolated from various 
environments, including bacteria from the genera Azospirillum, 
Bacillus, Azotobacter,  Clostridium, and Onyeze et al. [12], 
Klebsiella [13], and Rhizobium [14], all of which were isolated 
from soil [12,13,15] and from compost [16]. Additional to this, 
these bacteria are capable of promoting plant growth by 
synthesising plant growth promoting hormones such as 
cytokinins, auxins, and geberellins, inhibiting phytopathogenic 
organisms through production of fungal cell wall degrading 
enzyme, decreasing disease incidence through the secretion of 
antibiotic-like substances, and increasing phosphorus nutrition 
by phosphate solubilization [4]. This study provides an overview 
of the major group of bacteria known as nitrogen fixing bacteria 
in light of their contribution. 
 
Biological Nitrogen Fixation 
The principal means by which vegetation in native habitat get 
nitrogen necessary for development is through a process known 
as biological nitrogen fixation (BNF) [17]. Nearly one-third of 
the biologically fixed nitrogen (BNF) in terrestrial and aquatic 
ecosystems is produced by a very diversified group of 
Prokaryotes (Bacteria and Archaea) known as diazotrophs.[18, 
11]. In addition to free-living bacteria from the  Azotobactera, 
Burkholderia, Bacillus, Azospiruliuma and Clostridium genera, 
there are symbiotic bacteria linked with Rhizobium, actinorhizal 
plants like Frankia, and cyanobacteria connected with the cycad 
genus Cyanobacteria [19]. It is only methanogens that can fix 
nitrogen in Archaea[20]. nifH, a gene encoding a subunit of the 
iron protein of nitrogenase, is highly conserved throughout 
nitrogen-fixing groups and is an appropriate molecular identifier 
for these bacteria. Nitrogen-fixing bacteria express the 
nitrogenase enzyme complex[21].  
 

Researchers researching the phylogeny, variety, and 
abundance of nitrogen-fixing bacteria use it as a marker gene of 
choice [22]. The only known natural mechanism for reducing N2 
to NH3 is the enzyme complex found in bacteria, called bacterial 
nitrogenase [23]. The fixation of one molecule of nitrogen into 
two molecules of ammonia by BNF is one of the most expensive 
metabolic activities, requiring 16 molecules of ATP [23]. BNF is 
a cost-effective and environmentally friendly method for 
achieving long-term agricultural output sustainability [24]. 
 
Biological Associations of Nitrogen Fixing Bacteria 
Symbiotic Nitrogen Fixing Bacteria 
To fix biological nitrogen, heterocystic cyanobacteria and cycads 
[19], Frankia and the rhizome nodules of woody nonlegumes 
[25], as well as rhizobial bacteria (such as Rhizobium) and 
legumes (alfalfa, soybean) form symbiotic associations. This is 
how biological nitrogen fixation works [16]. When natural 
nitrogen is scarce, the symbiotic relationship between rhizobial 
bacteria and legumes has been shown to satisfy nitrogen demands 
for proliferation [26]. It is among the microorganism 
relationships that has been investigated the most thoroughly and 
evaluated the most exhaustively [27]. Legumes and Rhizobia 
work together to create Nod factors, which are then signalled by 
flavonoids released by the roots of legumes. These Nod factors 
aid plants in identifying microorganisms. Nodules are formed 
when legumes engage with rhizobia, resulting in bacterial 

infection. Rhizobia can fix nitrogen in the nodule because it has 
a low oxygen content[28, 29]. The legumes' carbon is exchanged 
for nitrogen fixed by the rhizobia inside the nodules [30]. 
 
Non-Symbiotic Nitrogen Fixing Bacteria 
Bacteria that fix nitrogen without forming a symbiotic 
relationship with plants are known as non-symbiotic nitrogen 
fixers and can be found in soil or water, either in connection with 
plants or as free-living organisms. 
 
Associative Nitrogen Fixing Bacteria 
Bacteria belonging to the genera Azospirillum, Paenibacillus and 
Herbaspirillum [31], Klebsiella[13], Pseudomonas [32], and 
Enterobacter execute associative nitrogen fixation [33]. Free-
living and symbiotic nitrogen fixers are separated by the 
associative nitrogen fixers in terms of the amount of nitrogen 
fixed [34]. On the roots of corn, wheat, and sugarcane, they have 
been most commonly found, according to the literature[35]. As 
their exudates include carbon, they aid the associated bacteria in 
obtaining a supply of carbon for nitrogen fixation [36]. 
 
Free-living Nitrogen Fixing Bacteria 
Symbiotic bacteria play an important role in nitrogen fixation; 
nevertheless, free-living nitrogen fixers provide a significant 
quantity of nitrogen to ecosystems [37]. Proteobacteria, 
Firmicutes, Archaea and Cyanobacteria are only few of the 
heterotrophs that may convert nitrogen to nitrous oxide in the 
absence of a food source [38]. The oxidation of organic 
molecules provides the energy for this process. In compared to 
symbiotic nitrogen fixation, free-living diazotrophs are thought 
to provide a very small quantity of total fixed nitrogen. The free-
living nitrogen fixers fix around one-tenth of the total 
atmospheric nitrogen fixed by the symbiotic relationship[24, 37].  
 

Symbiotic nitrogen fixers fix more nitrogen than free-living 
and associated nitrogen fixers, on the other hand [29]. Symbiotic 
nitrogen fixation utilises the host plant as a carbon source of 
power and a shield against oxidation process damages of the 
nitrogenase enzyme [29]. In the absence of oxygen, anaerobes 
and facultative anaerobes convert nitrogen from the atmosphere 
into ammonia. It is possible for Azospirillum bacteria to fix 
nitrogen in environments with low oxygen levels. Nitrogen fixing 
in aerobic bacteria like Azotobacter happens by reducing the 
intracellular oxygen content. The heterocyst of cyanobacteria is 
where nitrogen fixing takes place [39]. With a rise in oxygen in 
the atmosphere, nitrogen fixation reduces [37]. 
 
Plant Growth Promotion by Nitrogen Fixing Bacteria 
Plant growth stimulants have been linked to nitrogen-fixing 
microorganisms. Using both direct and indirect mechanisms, 
they encourage plant development [40]. Nitrogen fixing bacteria 
boost plant development by releasing phytohormones such as 
indole acetic acid (IAA), cytokinin’s [41], gibberellins [42], and 
auxins [42] in addition to the nitrogen fixation described above 
[43, 44]. Direct mechanisms include release of a molecule 
lessening phytopathogenic organism effects and producing 
siderophore (low molecular weight iron chelating compounds), 
cell wall disintegrating enzymes such as chitinase, and antibiotic-
like substances such as sulfonamide [45]. 
 

Solubilization of insoluble phosphorus by Rhizobium 
bacteria and species of Azotobacter have been shown to boost 
plant development in both legumes and non-legumes, 
respectively [46]. These bacteria are more beneficial than free-
living or associative nitrogen fixing bacteria because they are 
well protected within the nodule tissue and encounter little or no 
competition from indigenous soil microorganisms. Production of 
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indoleacetic acid by Rhizobium, Azotobacter and Bacillus, 
Paenibacillus and Pseudomonas has been reported [47, 48] and 
plays a central role in plant growth and development and acts as 
a signalling molecule which is involved in plant signal processing 
and motility or signalling [49] Alcaligenes sp. [49] has also been 
reported to produce indoleacetic acid [50]. Pseudomonas [51,49] 
and Azotobacter [52,53] have all been shown to produce 
siderophore (a low molecular weight iron chelating compound). 
Azospirillum [54] and Rhizobium [15, 55]. It has been shown that 
phytopathogens are suffocated by siderophores because they are 
unable to acquire iron from the soil, and this has been linked to 
siderophores [40]. 
 

Gibberellin is a key phytohormone in the growth and 
functioning of plants. Bacillus species such as Bacillus cereus 
MJ-1, Bacillus macroides CJ-29, and Bacillus pumilus have been 
shown to produce gibberellin [42]. Cytokinins [41], a 
phytohormone that regulates cytokinesis, growth, and 
development in plants, have been shown to be produced by 
nitrogen-fixing bacteria [56]. Nitrogen-fixing Bacillus 
megaterium [41] produced cytokinin (UMCV1). Bacillus sp. has 
also been shown to produce antibiotics and to degrade cell walls 
[57]. Antibiotics are made up of a variety of low-molecular-
weight secondary metabolites that are harmful to other 
microorganisms, such as plant pathogens, as well as to 
themselves [58]. Nitrogen-fixing Bacillus has produced several 
antibiotics, including amphisin, 2,4-diacetylphloroglucinol 
(DAPG), hydrogen cyanide, phenazine, and pyrolnitrin [57, 58]. 
Growth-promoting properties of the cell wall-degrading enzymes 
generated by several nitrogen-fixing bacteria, most often 
Bacillus. It is possible to destroy the cell wall of many 
phytopathogenic mushrooms with enzymes such as chitinase, 
cellulase, beta 1,3 glucanase, protease and lipases, reducing the 
frequency of plant illnesses [59]. 
 
Biosorption of Heavy Metals by Nitrogen Fixing Bacteria 
The importance of heavy metal pollution remediation technology 
cannot be overstated in a community that is able to meet both its 
economic and environmental needs. It's costly, requires a lot of 
chemicals, and results in harmful chemical sludge when using 
conventional techniques to remove metals from aqueous 
solutions [60]. Natural and ecologically friendly adsorbents, such 
as biomass from microbes and plants, are essential for metal 
adsorption, a process known as "biosorption." Toxic metal levels 
can be reduced to ecologically reasonable standards through 
biological therapy based on microbial and plant biomass [61]. 
Toxic metal ions have been removed from various matrices using 
microbial biomass [61-63].  
 

Microbial biomass materials have been demonstrated to 
successfully adsorb heavy metals from even extremely dilute 
aqueous solutions, and this has implications for the biosorption 
of heavy metals from wastewater by biological materials [64]. 
Complexation, coordination, physical adsorption, chelation, ion 
exchange, inorganic precipitation, or a mix of these activities are 
some of the ways metal biosorption mechanisms operate [65]. 
For microorganisms to remove metal through biosorption 
mechanisms, several variables must come into play, including 
metal ion composition and ionic strength as well as cell wall 
composition, physiology, and physicochemical conditions like 
pH and temperature [62,63]. 
 

Various heavy metals can be removed or absorbed from 
solutions by different kinds of nitrogen-fixing bacteria and their 
products. Despite their importance in plant host specificity [66, 
67] and growth promotion, rhizobial exopolysaccharides have 
only lately been studied for their metal sorption capability. At 

concentrations of 15.5, 20 and 25mg, Azotobacter's extracellular 
polymer was able to bioadsorb Cu, Zn, and Fe. After the 
Chernobyl nuclear disaster, researchers Douka and Xenoulis [68] 
found that nodulated pasture legumes significantly reduced 
radioactive metal concentrations. Rhizobium trifolii was reported 
to lower UO2 2 contents by 60% in a 0.4 mM solution with a 
maximal sorption capacity of 0.25 mmol UO2 2+/g, according to 
Cotoras et al.[68]. Using Azotobacter chrococcum XU1 
exopolysaccharide, Rasulov et al. [70] explored the biosorption 
of metal ions such as lead (Pb) and mercury (Hg) from solution 
and observed substantial removal of these ions from solution. 
Chromium (Cr) sorption by Azotobacter s8, Bacillus subtilis, and 
Pseudomonas aeruginosa live cells was studied by Kurniawan et 
al. [71]. Adsorption capabilities of 135.3 and 167.5 mg/g for 
cadmium and cobalt, respectively, were achieved by Rhizobium 
leguminosorium in research by Abd-Alla et al.[72]. N2 fixation 
bacteria were found to create polysaccharides and other 
biopolymers that have metal-binding capabilities [73]. 
Polysaccharides such as peptidoglycans, water-soluble and 
amphipathic exopolysaccharides (EPS), teichoic and teichuronic 
acids as well as capsular polysaccharides and polyglutamic acid 
are among the most common (LPS). If the cations are bound to 
the bacteria via electrostatic interactions, they are usually 
interacting with negatively charged functional groups such as 
uronic acids (EPS from Bradyrhizobium japonicum or alginate or 
teichuronic acid or emulsan or LPS from various sources), 
membrane phosphoryl groups or carboxylic amino acid groups. 
Cation binding by positively charged polymers [74] or 
coordination with hydroxyl groups may also play a role in 
electrostatic interactions[75, 76]. Eukaryotic polymers, such as 
chitin and chitosan, have been shown to bind cations, perhaps 
through chelation and coordination with hydroxyl groups [74]. 
LPS attaching metal ions to cell walls may not be directly linked 
to O-antigen side chains, but rather, the B-band LPS may alter 
cell surface characteristics, allowing metals to precipitate in 
certain areas of cell surface, as hypothesised by Langley and 
Beveridge[77]. 
 

For years, scientists are looking at the possibility of using 
microorganisms like bacteria that can resist, detoxify, and absorb 
metals to clean up metal-polluted settings [78]. Biosorbents and 
biosorption systems that are efficient, natural, eco-friendly, and 
financially feasible may be one answer to bioremediation of 
settings contaminated by heavy metals [79]. 
 
CONCLUSION 
 
Nitrogen-fixing bacteria convert atmospheric nitrogen into plant-
available form and are essential to soil health and plant growth. 
Plant growth promotion is promoted by the synthesis of various 
hormones and enzymes as well as the inhibition of 
phytopathogens by these microbes. A process known as 
biosorption provides an efficient, natural, eco-friendly, and 
economically viable method of removing heavy metal ions from 
solutions that are polluted with them. Reviewers found that these 
particular microbes have a variety of responsibilities in 
maintaining a healthy ecosystem. 
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