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INTRODUCTION 
 
A common biocide in the aquaculture industry is malachite green 
(MG), which is one of the most widely used (MG). One of the 
most effective anti-protozoal and anti-fungal drugs now available 
on the market. It has been used to manage skin and gill flukes as a 
general ectoparasiticide, as well as other parasites. Despite the fact 
that MG has long been used extensively as a topical therapeutic, 
aquaculture enterprises have largely neglected the possibility that 
topically applied therapeutants could have major internal impacts 
on their products. It is also employed as a food colouring agent 
and as an ingredient in foods, as a medical disinfectant and anti-
helminthic, and as a dye in the textile industry, among other things 
(such as silk and wool). Because of the dangers it causes to those 
who consume seafood that has been treated with MG, this material 
has become extremely contentious [1–4]. MG is produced by 
condensing benzaldehyde with two parts of diemethylaniline in 
the presence of strong sulfuric acid or zinc chloride to form a dark 
green crystalline solid known as MG. It is also possible to obtain 
MG in a 50/50 solution of acetate and hydrochloride salts, in 
addition to the salts of oxalate or hydrochloride. MG 
hydrochloride is manufactured by adding zinc chloride to the 
mixture and allowing it to precipitate, resulting in the development 
of a double zinc salt. In addition to the dye salt, a 
triphenylemethane dye can exist in two more ionic forms: the 

carbinol or pseudobase. They may enter cells as the pseudobase 
due to their high lipid solubility and ability to dissolve in lipids 
MG is reduced to its colourless form, leucoMG, in animals, which 
is then retained in their tissues as a result of biotransformation. 
The dye's precursor, leucoMG, has a structural resemblance to 
classic aromatic amines, and it is possible that it is present in the 
dye as a contaminant in the commercially manufactured dye. A 
number of researchers have estimated the LC50 values of different 
commercial dyes in fish at various time points over the course of 
several studies.  
 

There are numerous variables that influence the toxicity of 
certain toxicants, such as the temperature, pH, and hardness of the 
test water, making it difficult to analyse the effects on diverse 
species of fish [5–9]. The question of whether MG is teratogenic 
to fish has been investigated in great detail. Many other research, 
both clinical and experimental, have been conducted on MG over 
the years. Its toxicity to diverse organisms, aquatic and terrestrial 
has been reported [5,7–15] and its removal is thus warranted. 
Biodegradation of MG has been touted as an important aspect of 
MG bioremediation. The degradation and mineralization of MG 
by microorganisms has been reported. Bacterial growth and 
degradation of MG has been studied and show promising results 
for its potential use for the remediation of MG from the 
environment [16–28]. 
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 ABSTRACT 
In this paper, various growth models such as Von Bertalanffy, Huang, Baranyi-Roberts, Modified 
Gompertz, Buchnam-3-phase, Modified-Richards and Modified-Logistics, were presented in 
fitting and evaluating the growth of Bacillus cereus wwcp1 on Malachite green dye. The Von 
Bertalanffy model was found to be the best model with the lowest RMSE and highest R2 values. 
The Accuracy and Bias factor values were near unity (1.0). The von Bertalanffy parameters such 
as A (lower asymptote bacterial growth), µ (bacterial growth rate) and k (curve fitting parameter) 
were found to be 2.757 (95% confidence interval from 2.131 to 3.382 ), 0.287 (95% confidence 
interval from 0.244 to 0.329) and 4.323 (95% confidence interval from 4.285 to 4.361) 
respectively. 
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Bacterial growth curves typically followed a sigmoidal 

pattern, beginning with the lag section just after t = 0, followed by 
the logarithmic section, then the bacteria reach the stationary 
phase, and finally enter the death phase. Various sigmoidal 
functions such as Huang, Baranyi-Roberts, Von Bertalanffy, 
Modified Gompertz, Modified-Logistics, Modified-Richards, 
Morgan-Mercer-Flodin and Buchnam-3-phase were statistically 
compared in order to describe the bacterial growth curve [29–33].  
The F and t tests were used. The F test compares the lack of fit of 
the models to the measuring error. While in the t test, confidence 
intervals for parameters can be estimated and used to differentiate 
between models. Also, the models were compared in relation to 
their ease of use.  
 

All sigmoidal functions were modified to include all 
biologically significant parameters. The maximum specific 
growth rate (µmax), the lag period, and the asymptotic values are 
important growth curve parameters. The maximum growth rate 
(µmax) value can be used in the development of secondary models 
to investigate the effects of substrate, temperature, pH, and 
product on growth rate. Most models of bacterial growth, fall 
somewhere between mechanistic and empirical properties, though 
these two groups can coexist in reality [33–36]. The use of primary 
models in the modeling of Bacillus cereus wwcp1 growth curve 
on malachite green dye is presented for the first time in this 
finding. This study is aimed at evaluating various available 
mathematical models such as Logistic, Gompertz, Von 
Bertalanffy, Buchanan three-phase, and, more recently, the Huang 
model in fitting and analyzing Bacillus cereus growth on 
malachite green dye. 
 
MATERIALS AND METHODS 
 
Data Acquisition 
The graphical data from a published work by Wanyonyi et al [37] 
from Fig 5 (effect of temperature on the decolorization of MG dye) 
was processed using the software Webplotdigitizer 2.5, which 
digitizes the scanned figure and has been used and recognized by 
many researchers due to its precision and reliability [38]. 
 
Statistical Analysis 
As previously, the adjusted coefficient of determination (R2), 
accuracy factor (AF), bias factor (BF), Root-Mean-Square Error 
(RMSE), and corrected AICc (Akaike Information Criterion) were 
used to calculate the statistically significant difference between the 
models [29,39–42].  
 
Fitting of the Data 
CurveExpert Professional software (Version 1.6) was used to fit 
the bacterial growth curve using multiple growth models (Table 1) 
through nonlinear regression with the Marquardt algorithm. The 
steepest ascent rifle of the curve was used to estimate the highest 
growth rate (µmax), while the line crossing the X-axis was used to 
estimate the lag time (λ). For the modeling exercise, the highest 
growth rate was chosen. 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Growth models used in this study. 
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Note: 
A= Bacterial growth lower asymptote; 
μmax= maximum specific bacterial growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
ymax= Bacterial growth upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter that quantifies the initial physiological state of the reduction process. 
The lag time (h-1) can be calculated as h0=μmax 
 
 
RESULTS AND DISCUSSION 
 
Based on bacterial growth modeling, the best model was 
discovered to be the von Bertalanffy model, which had the lowest 
RMSE, AICc, and adjusted R2 values. The AF and BF values for 
the model were also outstanding, with values close to 1.0. All of 
the model fitted to the date with the exception of the Buchanan-3-
phase, which show the worst fitting (Figs. 2 to 8). Table 3 shows 
the coefficients for the Von Bertalanffy model. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = YMAX, IF X ≥ XMAX 
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Fig. 1. Growth of Bacillus cereus on malachite green at different 
temperatures. 
 
 

 
 
Fig. 2. Growth of Bacillus cereus modelled using Huang model. 
 
 

 
Fig. 3. Growth of Bacillus cereus modelled using Baranyi-Roberts model. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Fig 4. Growth of Bacillus cereus modelled using modified-Gompertz 
model. 
 
 

 
 
Fig. 5. Growth of Bacillus cereus modelled using Buchanan-3-phase 
model. 
 
 
 

 
 
Fig. 6. Growth of Bacillus cereus modelled using modified-Richards 
model. 
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Fig. 7. Growth of Bacillus cereus modelled using the modified-Logistics 
model. 
 

 
 
 
Fig. 8. Growth of Bacillus cereus modelled using the von Bertalanffy 
model. 
 
Table 2. Statistical tests for the different models used to model the Bacillus  
cereus growth curve on malachite green dye. 
 
 

Model p RMSE adR2 AF BF AICc 
Huang 4 0.2227 0.9393 1.0925 1.0349 -58.30 
Baranyi-Roberts 4 0.3571 0.8892 1.0881 0.9957 -34.69 
Modified Gompertz 3 0.1989 0.949 2.25 1.0482 -67.93 
Buchanan-3-phase 3 5.5173 -0.045 2.25 2.2224 98.199 
Modified Richards 4 0.2036 0.9465 1.0981 1.0482 -62.78 
Modified Logistics 3 0.244 0.918 1.118 1.06 -57.642 
Von Bertalanffy 3 0.178 0.961 1.09 1.04 -73.591 

Note: 
P=number of parameters 
 
Table 3. Growth coefficients modelled using the von Bertalanffy model. 
 

Parameters Value 95% Confidence interval 
u 0.287 0.244 to 0.329 
A 2.757 2.131 to 3.382 
k 4.323 4.285 to 4.362 

 
The von Bertalanffy parameters such as A (lower asymptote 

bacterial growth), m (bacterial growth rate) and k (curve fitting 
parameter) were found to be 2.757 (95% confidence interval from 
2.131 to 3.382 ), 0.287 (95% confidence interval from 0.244 to 
0.329) and 4.323 (95% confidence interval from 4.285 to 4.361) 
respectively (Table 3). Von Bertalanffy growth model has been 
used to mimic the growth of a wide range of species, including 
fishes, mammals, birds, invertebrates, and microbes. It is a variant 
of Richards' model, and it is based on biological principles devised 
by Pütter. For many species, growth rate has been found to 
correlate with various life-history features, including as fertility 
and lifespan, making it a crucial driver of organism fitness. The 
model was first intended to model fish growth in ecology, but it is 
currently used to model other organisms, including bacterial 
biodegradation [43–49]. 
 

CONCLUSION 
 
It could be concluded that, based on statistical tests such as 
corrected AICc (Akaike Information Criterion), bias factor (BF), 
adjusted coefficient of determination (R2), and root-mean-square 
error (RMSE), the Von Bertalanffy model was found to be the best 
model in modelling the growth of Bacillus cereus on malachite 
green dye. Lower asymptote bacterial growth (A), bacterial 
growth rate (µ), and curve fitting parameter, (k) were among the 
parameters obtained from the fitting exercise. The employment of 
bacterial growth models to achieve a precise growth rate is 
beneficial for secondary model development, and this work has 
proved the capabilities of such models. 
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